Research Details

Forecasting Analogous Time Series

Citation:

Organizations that use time series forecasting on a regular basis generally forecast many variables, such as demand for many products or services. Within the population of variables forecasted by an organization, we can expect that there will be groups of analogous time series that follow similar, time-based patterns. The co-variation of analogous time series is a largely untapped source of information that can improve forecast accuracy (and explainability). This paper takes the Bayesian pooling approach to drawing information from analogous time series to model and forecast a given time series. Bayesian pooling uses data from analogous time series as multiple observations per time period in a group-level model. It then combines estimated parameters of the group model with conventional time series model parameters, using "shrinkage" weights estimated empirically from the data. Major benefits of this approach are that it 1) minimizes the number of parameters to be estimated (many other pooling approaches suffer from too many parameters to estimate), 2) builds on conventional time series models already familiar to forecasters, and 3) combines time series and cross-sectional perspectives in flexible and effective ways.
 


Publication Year: 1998
Type: Working Paper
Working Paper Number: 4

Adobe .pdf files require the Adobe Acrobat Reader.
Download and install the Adobe Acrobat Reader.