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Abstract—This paper documents a systematic shift in the nature of inno-
vation in information technology (IT) toward increasing dependence on
software. Using a broad panel of U.S. and Japanese publicly listed IT
firms in the period 1983 to 2004, we show that this change in the nature
of IT innovation had differential effects on the performance of the IT
industries in the United States and Japan, resulting in U.S. firms increas-
ingly outperforming their Japanese counterparts, particularly in more
software-intensive sectors. We provide suggestive evidence that human
resource constraints played a role in preventing Japanese firms from
adapting to the documented shift in IT innovation.

I. Introduction

THE surge of innovation in information technology (IT)
is one of the great economic developments of the past

two decades. This period also coincides with the unex-
pected resurgence of the IT sector in the United States,
belying the gloomy predictions about this industry popular
in the late 1980s and early 1990s (Cantwell, 1992; Arrison
& Harris, 1992). In this paper, we argue that these two
developments are closely related.

We present evidence that the IT innovation process is
increasingly software intensive: non-software IT patents are
significantly more likely to cite software patents, even after
controlling for the increase in the pool of citable software
patents. We also see substantial differences across IT sub-
sectors in the degree to which innovation is software inten-
sive. We exploit these differences to sharpen our empirical
analysis.

If the innovation process in IT has indeed become more
dependent on software competencies and skills, then firms
better able to use software advances in their innovation pro-
cess will benefit more than others. Indeed, we argue that the
shift in software intensity of IT innovation has differentially
benefited American firms over their Japanese counterparts.
Our results from a sizable unbalanced panel of the largest

publicly traded IT firms in the United States and Japan for
the period 1983 to 2004 show that U.S. IT firms have
started to outperform their Japanese counterparts as mea-
sured by both the productivity of their innovative activities
and the stock market valuation of their R&D.1

The timing and the concentration of this improvement in
relative performance appear to be systematically related to
the software intensity of IT innovation. We show that the
relative strength of American firms tends to grow in the
years after the rise in software intensity had become well
established. Furthermore, the relative improvement of the
U.S. firms is greatest in the IT subsectors in which the soft-
ware intensity of innovation is the highest. Finally, much of
the measured difference in financial performance disap-
pears when we separately control for the software intensity
of IT innovation at the firm level.

Why were U.S. firms better able to take advantage of the
rising software intensity of IT innovation? Bloom, Sadun,
and Van Reenen (2012) argue that superior American man-
agement allows U.S. multinationals to derive a greater pro-
ductivity boost out of a given level of IT investment than
their European rivals. In the context of our study, we find
evidence that the openness of America’s labor market to
foreign software engineers may have played a key role in
alleviating for American firms what was likely to have been
a global shortage of skilled software engineers during the
1990s. When Japanese firms undertake R&D and product
development in the United States, it appears to be much
more software intensive than similar activity undertaken
in Japan. These results highlight the importance of local
factor market conditions in shaping the geography of inno-
vation.

This paper is structured as follows. Section II documents
the existence of a shift in the technological trajectory of IT,
section III empirically explores its implications for the
innovation performance of U.S. and Japanese IT firms, and
section IV discusses the possible explanations for the trends
we observe in our data. We conclude in section V with
a summary of the key results and suggestions for future
work.
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1 These results parallel the findings of Jorgenson and Nomura (2007),
who demonstrate that Japanese TFP rose rapidly for decades, converging
to U.S. levels, but then began diverging from it around 1995. Their indus-
try-level analysis suggests that a change in the relative performance of the
IT-producing industries (which we study in this paper) and the IT-using
industries were particularly important in driving the shift from conver-
gence to divergence. Jorgenson and Nomura do not attempt to explain the
mechanisms behind divergence in productivity. For an earlier study of
changing Japanese innovative performance using patent and R&D date,
See Branstetter and Nakamura 2003).
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II. The Changing Technology of Technological

Change in IT

A survey of the computer and software engineering lit-
erature points to an evident increase in the role of software
for successful innovation and product development in the
IT industry. The share of software costs in product design
has increased steadily over time (Allan et al. 2002), and
software engineers have become more important as high-
level decision makers at the system design level in telecom-
munications, semiconductors, hardware, and specialized
industrial machinery (Graff, Lormans, and Toetenel, 2003).
Graff et al. (2003) further argue that software will increase
in importance in a wide range of products, such as mobile
telephones, DVD players, cars, airplanes, and medical sys-
tems. Industry observers claim that software development
and integration of software applications has become a key
differentiating factor in the mobile phone and PDA indus-
tries (Express Computer, 2002). A venture capital report by
Burnham (2007) forcefully argues that that the central value
proposition in the computer business has shifted from hard-
ware to systems and application software.

Similarly, De Micheli and Gupta (1997) assert that hard-
ware design is increasingly similar to software design, so
that the design of hardware products requires extensive
software expertise. Gore (1998) argues that peripherals are
marked by the increasing emphasis on the software compo-
nent of the solution, bringing together hardware and soft-
ware into an integrated environment.2 Kojima and Kojima
(2007) suggest that Japanese hardware manufacturers will
face increasing challenges due to the rising importance of
embedded software in IT hardware products. In sum, there
is broad agreement among engineering practitioners and
technologists that software has become more important in
IT. In the next section, we validate this assertion formally,
using data on citation patterns of IT patents.

III. Measuring the Shift in the Technology of

Technological Change in IT

A. Approach

If innovation in IT truly has come to rely more heavily
on software, then we should observe that more recent
cohorts of IT patents cite software technologies with
increasing intensity, and this should be the case even when
we control for the changes over time in the volume of IT
and software patenting. We therefore use citations by non-
software IT patents to software patents as a measure of the
software intensity of IT innovation.

Patents have been used as a measure of innovation in main-
stream economic research at least since the early 1960s.

Though subject to a variety of limitations, patent citations are
frequently used to measure knowledge flows (Griliches,
1990; Jaffe & Trajtenberg, 2002). Following Caballero and
Jaffe (1993) and Jaffe and Trajtenberg (1996, 2002), we use a
citation function model in which we model the probability
that a particular patent, p, applied for in year t, will cite a par-
ticular patent, P, granted in year T. This probability is deter-
mined by the combination of an exponential process by
which knowledge diffuses and a second exponential process
by which knowledge becomes superseded by subsequent
research (Jaffe & Trajtenberg, 2002). The probability,
Pr(p,P), is a function of the attributes of the citing patent p
and the the cited patent P, a(p, P) and the time lag between
them (t� T):

Prðp;PÞ ¼ aðp;PÞ � expð�b1ðt� TÞ
� ð1� expð�b2ðt� TÞÞ:

ð1Þ

We sort all potentially citing patents and all potentially
cited patents into cells corresponding to the attributes of
patents. The attributes of the citing patents comprise the cit-
ing patent’s grant year, its geographic location, and its tech-
nological field (IT, software). The attributes of the cited
patents are the cited patent’s grant year, its geographic loca-
tion, and its technological field. Thus, the expected number
of citations from a particular group of citing patents to a
particular group of cited patents can be expressed as

Eðcabcdef Þ ¼ nabc � ndef � aabcdef � expð�b1ðt� TÞ
� ð1� expð�b2ðt� TÞÞ;

ð2Þ

where the dependent variable measures the number of cita-
tions made by patents with grant year (a), geographic loca-
tion (b), and technological field (c) to patents with grant year
(d), geographic location (e), and technological field (f). The
alpha terms are multiplicative effects estimated relative to a
benchmark, or base, group of citing and cited patents, and
nabc and ndef are the number of patents in the respective cate-
gories. Rewriting equation (2) gives us the Jaffe–Trajtenberg
(2002) version of the citation function, expressing the aver-
age number of citations from one category patent to another:

pðcabcdef Þ ¼
Eðcabcdef Þ
nabc � ndef

¼ aabcdef � expð�b1ðt� TÞ

� ð1� expð�b2ðt� TÞÞ: ð3Þ

Adding an error term, we can estimate this equation
using the nonlinear least squares estimator. The estimated
equation thus becomes

pðcabcdef Þ ¼ aa � ab � ac � ad � ae � af

� expð�b1ðt� TÞ
� ð1� expð�b2ðt� TÞÞ þ eabcdef :

ð4Þ

In estimating equation (4), we adjust for heteroskedasti-
city by weighting the observations by the square root of the

2 Personal discussions with Mark Kryder, former CTO of Seagate,
confirmed that software has become an increasingly important driver of
product functionality and product differentiation in the hard disk drive
industry.
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product of potentially cited patents and potentially citing
patents corresponding to the cell, that is,

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnabcÞ � ðndef Þ

q
: ð5Þ

B. Data

We use patents granted by the U.S. Patent and Trademark
Office (USPTO) between 1983 and 2004. We use the
geographic location of the first inventor to determine the
‘‘nationality’’ of the patent. We identify IT patents, broadly
defined, using a classification system based on USPTO
classes, developed by Hall, Jaffe, and Trajtenberg (2001).
They classified each patent into 36 technological subcate-
gories. We applied their system and identified IT patents as
those belonging to any of the following categories: compu-
ters and communications, electrical devices, or semicon-
ductor devices. We obtained these data from the most
recent version of the NBER patent data set, which covers
patents granted through the end of 2006.

Next, we identified software-related patents, which is a
challenge in itself. There have been three significant efforts
to define software patents. Graham and Mowery (2003)
defined software patents as the intersection of those falling
within a narrow range of International Patent Classification
(IPC) classes and those belonging to packaged software
firms. This created a sample that omitted large numbers of
software patents, according to Allison and Mann (2007).

The second effort was that of Bessen and Hunt (2007),
who defined a software invention as one in which the data
processing algorithms are carried out by code either stored
on a magnetic storage medium or embedded in chips. They
rejected the use of official patent classification systems and
used a keyword search method instead. They identified a
small set of patents that adhered to their definition and then
used a machine learning algorithm to identify similar
patents in the patent population, using a series of keywords

in the patent title and abstract. Arora et al. (2007) used a
similar approach that connects the Graham-Mowery and
Bessen-Hunt definitions.3

We used a combination of broad keyword-based and
patent class strategies to identify software patents. First, we
generated a set of patents, granted after January 1, 1983,
and before December 31, 2004, that used the words soft-
ware or computer program in the patent document. Then
we defined the population of software patents as the inter-
section of the set of patents the query returned and IT
patents broadly defined as described above, granted in the
period 1980 to 2006. This produced a data set consisting of
106,379 patents.

These data are potentially affected by a number of biases.
Not all inventions are patented, and special issues are raised
by changes in the patentability of software over the course
of our sample period, making it all the more important to
control for the expansion in the pool of software patents over
time, as we do. We also rely on patents generated by a single
authority, the USPTO, to measure invention for both U.S.
and Japanese firms. However, Japanese firms have histori-
cally been among the most enthusiastic foreign users of the
U.S. patent system. Evidence suggests that the U.S. patents
of Japanese firms are a reasonably accurate proxy of their
inventive activity (Branstetter, 2001; Nagaoka, 2007). This
is particularly true in IT, given the importance of the U.S.
market in the various components of the global IT industry.

C. Results

Figure 1 shows trends over time in the fraction of total
(non-software) IT patents’ citations going to software
patents. While the trends for both Japanese and U.S. firms
rise significantly over the 1990s and then level off a bit in

FIGURE 1.—SOFTWARE INTENSITY OF NON-SOFTWARE IT PATENTS

FRACTION OF IT PATENT CITATIONS MADE TO SOFTWARE PATENTS

3 Allison and Mann (2007) rejected the use of both the standard classifi-
cation system and keyword searches, resorting to the identification of
software patents by reading through them manually. Although potentially
more accurate, this method is inherently subjective and not scalable.
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the 2000s, the measured gap between Japanese and U.S.
firms rises substantially over the period. A one-tailed t-test
reveals that these differences are statistically significant at
conventional levels for every year of interest. However, this
analysis does not take into account a variety of other fac-
tors; thus, we turn next to parametric analysis.

The unit of analysis in table 1 is an ordered pair of citing
and cited patent classes. Our regression model is multiplica-
tive, so a coefficient of 1 indicates no change relative to the
base category. Our coefficients are reported as deviations
from 1. The cited software patent dummy, large, positive,
and statistically significant, indicates that IT patents in the
1990s are 9.42 times more likely to cite software patents
than prior IT patents, controlling for the sizes of available
IT and software patent pools. The second specification in
table 1 includes only software patents in the population of
possibly cited patents. The coefficients on the citing grant
years show a sharp increase in citation probabilities from
1991 to 2003. An IT patent granted in 1996 is 1.85 times
more likely to cite a software patent than an IT patent
granted in 1990. Furthermore, an IT patent granted in 2003
is almost 3.2 times more likely to cite a software patent than

that granted in 1990. Comparing the citing grant year coef-
ficients in the left-hand column of table 1, obtained from
the full sample, to the citing grant year coefficients in the
right-hand column, obtained from citations to software
patents only, shows that the tendency of IT patents to cite
software patents increases over time, suggesting that soft-
ware patents are becoming increasingly important for IT
innovation. In table 1, we also explore citation differences
between Japanese- and non-Japanese-invented IT inven-
tions. The specification in the left-hand column indicates
that Japanese-invented IT patents are 31% less likely to cite
other IT patents than non-Japanese IT patents. However,
they are also much less likely to cite software patents than
non-Japanese IT patents. This result is corroborated by the
regression in the right-hand column, where the coefficient
on the Japanese dummy again shows that Japanese-invented
IT patents are significantly less likely to cite software
patents than non-Japanese patents.

The citation function results were subjected to a number
of robustness checks. Concerned that our results might be
driven by large numbers of U.S.-invented software patents
appearing in the more recent years of our sample, we esti-

TABLE 1.—CITATION FUNCTION RESULTS

Full Sample Citations to Software Patents Only

Coefficient SE Coefficient SE

Citing grant year
1991 0.4549** 0.1760 0.5013*** 0.1662
1992 0.6572*** 0.1783 0.7418*** 0.1716
1993 0.7317*** 0.1683 0.8482*** 0.1645
1994 1.0131*** 0.1750 1.2010*** 0.1752
1995 1.2123*** 0.1717 1.4509*** 0.1742
1996 1.5258*** 0.1722 1.8499*** 0.1779
1997 1.5966*** 0.1548 1.9673*** 0.1619
1998 1.7073*** 0.1378 2.1389*** 0.1462
1999 1.6623*** 0.1156 2.1203*** 0.1239
2000 1.5740*** 0.0960 2.0478*** 0.1039
2001 2.1979*** 0.0966 2.8943*** 0.1072
2002 2.3529*** 0.0915 3.1451*** 0.1029
2003 2.3546*** . 3.1691*** .

Cited grant year
1990 �0.0958*** 0.0197 �0.1078*** 0.0174
1991 �0.3330*** 0.0191 �0.3621*** 0.0165
. . . . . . . . . . . . . . .
2001 �0.8881*** 0.0157 �0.9138*** 0.0112
2002 �0.9167*** 0.0191 �0.9367*** 0.0137

Citing patent type
Computer hardware and software 1.0414*** 0.0398 1.1936*** 0.0403
Computer peripherals 0.4806*** 0.0345 0.5443*** 0.0339
Information storage 0.3778*** 0.0324 0.4296*** 0.0317
Other computer and communication 2.3707*** 0.0652 2.7084*** 0.0674
Electrical devices �0.8256*** 0.0209 �0.9188*** 0.0192
Semiconductors �0.6657*** 0.0199 �0.7863*** 0.0186
Other
Citing from Japan �0.3078*** 0.0313 �0.6298*** 0.0059
Cited software patent 9.4217*** 0.2573 n/a n/a
Citing from Japan � Cited Software �6.2592*** 0.1981 n/a n/a
Obsolescence 0.3252*** 0.0095 0.3398*** 0.0087
Diffusion 3.61e-06*** 4.79e-07 3.56e-04*** 4.27e-06
Adjusted R2 0.9232 0.9674
Number of observations 2,940 1,470

The data for regression estimations presented in this table are drawn from the CASSIS patent database maintained by the U.S. Patent and Trademark Office and from the NBER Patent Data Project database.
Regression specifications are estimated in STATA using the nonlinear least squares algorithm. The dependent variable is an empirical measure of the probability a citing patent of a given type cites a cited patent of a
given type. All presented coefficients are relative to base categories. They are the following: citing patent grant year ¼ 1990, cited patent grant year ¼ 1989, citing patent type ¼ ‘‘Communications,’’ cited patent cate-

gory ¼ ‘‘non-software’’ (only applicable to column I), citing patent geography ¼ ‘‘Japan.’’ Patent origin is defined using all inventors listed on the patent document.
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mated the propensity of U.S. IT patents to cite software
patents generated outside the United States and found a rise
in this propensity qualitatively similar to that depicted in
table 1. We also directly controlled for the disproportio-
nately high likelihood that patents cite patents from the
same country, but our result that Japanese IT hardware
patents are systematically less likely to cite software over
time was robust to this. Finally, concerned that this result
might be observed at least partially due to traditionally
stronger university-industry ties in the United States,4 we
also estimated a version of the citations function in which
we excluded all university-assigned patents and those citing
them. We found our results to be robust to this as well.

The U.S. Bureau of Labor Statistics data on U.S. employ-
ment by occupation and industry from 1999 to 2007 reveal
trends consistent with a rising importance of software in IT
innovation.5 For instance, figure 2 illustrates how two mea-
sures of the share of software engineers in total employment
in the computer and peripheral equipment manufacturing
industry have trended upward over time. Although we do
not provide the additional figures for reasons of space, we
have also seen similar trends in other IT subsectors. The
share is highest in computers and peripherals, lowest in
audio and visual equipment manufacturing, and at inter-
mediate levels in semiconductors. Interestingly, the relative
share of software engineers in total employment across sub-
sectors appears to accord with patent citation-based mea-
sures of software intensity.

IV. Comparing U.S. and Japanese Firm-Level

Innovation Performance in IT

Our citation function results suggest that there has been a
shift in the nature of technical change within IT: invention

has become much more software intensive. Our results also
suggest that U.S. firms have more actively incorporated
software into their inventive activity than have Japanese
firms. If this is true, then it is reasonable to expect that
changes in the relative performance of Japanese and Ameri-
can firms may be related to the software intensity of the
industry segments in which they operate. In segments of IT
where innovation has become most reliant on software, we
should expect to see American firms improve their innova-
tive performance relative to Japanese firms. In segments of
IT where innovation does not draw heavily on software, we
would expect less of an American resurgence. As we shall
see, two very different measures of relative performance
show exactly this pattern.

We use two of the most commonly employed empirical
approaches to compare firm-level innovation performance
of U.S. and Japanese IT firms: the innovation (patent) pro-
duction function and the market valuation of R&D. While
the former approach relates R&D investments to patent
counts and allows us to study the patent productivity of
R&D, the second approach relates R&D investment to the
market value of the firm and explores the impact of R&D
on the value of the firm (Tobin’s q).

A. Patent Production Function

This approach builds on Pakes and Griliches (1984) and
Hausman, Hall, and Griliches (1984). We use a log-log
form of the patent production function.

Pit ¼ Rb
it/ite

uJPi ; ð6Þ

where

/it ¼ e
P

c
dcDc : ð7Þ

In equation (6), Pit are patents taken out by firm i in per-
iod t, Rit are research and development expenditures, JPi

FIGURE 2.—TRENDS IN SOFTWARE ENGINEERING EMPLOYMENT

(PERCENT OF TOTAL EMPLOYMENT IN COMPUTER AND PERIPHERAL EQUIPMENT MANUFACTURING)

Source: Bureau of Labor Statistics, Occupational Employment Survey, 1999–2007.
Data include domestically employed H1-B visa holders.

4 See Goto (2000) and Nagaoka (2007) for a more detailed discussion.
5 Methodological changes in the survey make it difficult to track occu-

pational employment in the U.S. IT industry in a consistent way over
time, particularly in comparing the periods before and after 1999.
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indicates if the firm is Japanese, and F represents sector-
specific technological opportunity and patenting propensity
differences D across c different innovation sectors as speci-
fied in equation (7). Substituting equation (7) into (6), tak-
ing logs of both sides, and expressing the sample analog we
obtain

pit ¼ brit þ
X

c
dcDc þ uJPi þ lit; ð8Þ

where pit is the natural log of new patents (flow) and the
error term, which is defined below:

lit ¼ ni þ uit: ð9Þ

We allow the error term in equation (9) to contain a firm-
specific component, xi, which accounts for the intraindustry
firm-specific unobserved heterogeneity, and an i.i.d. random
disturbance, uit. The presence of the firm-specific error
component suggests using random- or fixed-effects estima-
tors. Since the fixed-effects estimator precludes time-invar-
iant regressors, including the firm origin indicator, we fea-
ture the pooled OLS and random effects estimators and use
the fixed-effects estimator as a robustness check.

B. Private Returns to R&D and Tobin’s q

Griliches (1981) pioneered the use of Tobin q regressions
to measure the impact of R&D on a firm’s economic per-
formance (see Hall, 2000, for a detailed review, see also
table 3). We can represent the market value V of firm i at
time t as a function of its assets,

Vit ¼ f ðAit;KitÞ; ð10Þ

where Ait is the replacement cost of the firm’s tangible
assets, typically measured by their book value, and Kit is
the replacement value of the firm’s technological knowl-
edge, typically measured by stocks of R&D expenditures.6

We follow the literature, which assumes that the different
assets enter into the equation additively:

Vit ¼ qtðAit þ b� KitÞr; ð11Þ

where qt is the average market valuation coefficient of the
firm’s total assets, b is the shadow value of the firm’s tech-
nological knowledge measuring the firm’s private returns to
R&D, and s is a factor measuring returns to scale. Again,
following standard practice in the literature (Hall & Oriani,
2006), we assume constant returns to scale (s ¼ 1). Then,
by taking natural logs on both sides of equation (11) and
subtracting ln Ait, we obtain the following expression that
relates a firm’s technological knowledge to its value above
and beyond the replacement cost of its assets, Tobin’s q:

ln Qit ¼ ln
Vit

Ait

� �
¼ ln qt þ ln 1þ b� Kit

Ait

� �� �
: ð12Þ

Following Hall and Kim (2000) and others, we estimate a
version of equation (12) using the nonlinear least squares
estimator, with time dummies and a firm origin indicator.
We were unable to estimate a specification with firm-fixed
effects because the NLS algorithms did not converge. As a
robustness check, we estimated a linearized version of
equation (12) with fixed effects.

C. Data and Variables

Sample. Our sample consists of large publicly traded IT
companies in the United States and Japan, observed from
1983 to 2004.7 We obtained the sample of U.S. firms from
historical lists of constituents of Standard & Poor’s (S&P)
U.S. 500 and S&P 400 indices. The resulting set of firms
was refined using Standard & Poor’s Global Industry Clas-
sification Standard (GICS) classification so that only firms
appearing in ‘‘electronics,’’ ‘‘semiconductors,’’ ‘‘IT hard-
ware,’’ and ‘‘IT software and services’’ categories remained
in the sample.8 This initial set of approximately 290 firms
was narrowed further as follows: (a) only firms with least
ten patents in between 1983 and 2004 were retained, (b)
U.S. firms in ‘‘IT software and services’’ were removed to
achieve compatibility, and (c) only firms for which at least
three consecutive years of R&D investment and sales data
were available were kept in the sample.9 This yielded an
unbalanced panel of 133 US IT firms.

The initial sample of 154 large, publicly traded Japanese
IT firms derived from the Development Bank of Japan (DBJ)
database10 was supplemented by an additional 34 firms
included in Standard & Poor’s Japan 500 index as of January
1, 2003, that belong to either ‘‘electronics,’’ ‘‘semicon-
ductors,’’ ‘‘IT hardware,’’ or ‘‘IT software and services.’’11

We winnowed the sample by dropping all firms without
at least ten patents in the observed period, dropping Nippon
Telephone and Telegraph, and dropping all firms that did
not have at least three consecutive years of R&D invest-
ment and positive output data. This produced a final sample
of 77 Japanese IT firms.

Collectively, the Japanese and U.S. firms in our sample
accounted for over 70% of total U.S. IT patenting by Japa-
nese and U.S. firms, respectively, in the late 1990s and early

6 The construction of variables is explained in greater detail in subse-
quent sections.

7 We use the NBER Patent Database, which currently incorporates all
patents granted through 2006. Since our empirical specifications use
patents dated by the date of application, and since patents can take more
than two years to work their way through the USPTO evaluation process,
we are currently unable to extend our data past 2004.

8 GICS, the Global Industry Classification System, is constructed and
managed by Moody’s in collaboration with Compustat.

9 NTT is the only Japanese firms in ‘‘IT services and software’’ in our
sample.

10 We thank the Columbia Business School Center on the Japanese
Economy and Business for these data.

11 January 1, 2003, was the date of creation of this index.
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2000s, confirming that we are capturing a large majority of
private sector innovative activity in this domain.12

Locating firms in software intensity space. To explore
how innovation performance differentials between U.S. and
Japanese firms vary with software intensity, we classify
firms into industry segments. GICS provided us with a clas-
sification of U.S. firms in our sample into four sectors: ‘‘elec-
tronics,’’ ‘‘semiconductors,’’ ‘‘IT hardware,’’ and ‘‘IT soft-
ware and services.’’ Japanese firms were classified manually
using the two-digit GSIC classification data from the S&P
Japan 500, along with data from Japan’s Standard Industrial
Classification (JSIC), supplemented by data from Google
Finance, Yahoo! Finance, and corporate websites.

We construct two separate measures of software intensity,
both of which suggest a similar ranking of IT subsectors.
First, we use the shares of software patents in total patents
taken out by the firms, averaged across firms in an industry
category. Second, we calculate the fraction of citations to
software patents by non-software IT patents, averaged
across firms in a sample category. Table 2 presents summary
statistics for both these measures of software intensity. As
expected, electronics is the least software intensive, fol-
lowed by semiconductors and IT hardware. A two-sided test

for the equality of means rejects that the intensities are the
same in any pair of sectors when we use the share of soft-
ware patents as our measure. The second measure, citations
to software patents, yields similar results, albeit at lower
levels of significance in some cases. Table 3 calculates the
industry averages of our measures of software intensity
separately for U.S. and Japanese firms. In general, the rank-
ing of industries in terms of software intensity suggested by
the overall sample applies to the country-specific subsam-
ples as well.13 Japanese firms are disproportionately located
in less software-intensive sectors, and within those sectors,
are less software-intensive than their U.S. counterparts.

Taking the assignment of firms to the different IT indus-
tries as given, we test whether U.S. firms outperform Japa-
nese firms and whether this performance gap is more
marked in IT industries that are more software intensive.14

Construction of variables. Patent counts—Patent data
for our sample of firms were collected from the updated
NBER patent data set containing patents granted by the end
of 2006. Compustat firm identifiers were matched with
assignee codes based on the matching as constructed and
available on the NBER’s Patent Data Project website.15

The matching algorithm for Japanese firms was based on a

TABLE 2.—SOFTWARE INTENSITY BY SECTOR, 1983–2004

A. Firm-Level Software Intensity

Share of Software Patents Share of Citations to Software Patents

Industry Number of Observations Mean SD Number of Observations Mean SD

Electronics 65 0.0387 (***/***) 0.0808 65 0.0544 (*/***) 0.0654
Semiconductors 53 0.1069 (***/***) 0.1246 53 0.0768 (*/***) 0.0837
IT hardware 92 0.1974 (***/***) 0.1681 92 0.1428 (***/***) 0.1109

B. Patent-Level Software Intensity

Share of Software Patents Share of Citations to Software Patents

Industry Number of Observations Mean SD Number of Observations Mean SD

Electronics 67,775 0.0476 (***/***) 0.2130 23,452 0.0532 (***/***) 0.1429
Semiconductors 83,609 0.0995 (***/***) 0.2994 48,214 0.0742 (***/***) 0.1678
IT Hardware 25,1422 0.1439 (***/***) 0.3510 126,339 0.1127 (***/***) 0.2092

This table compares measures of software intensity of firms in our sample that belong to different subsectors. The data used to construct measures of software intensity come from the CASSIS patent database main-
tained by the U.S. Patent and Trademark Office and from the NBER Patent Data Project database. The unit of observation for descriptive statistics and statistical tests presented in panel A is a firm. The share of soft-
ware patents for each firm is computed as the number of software patents granted to a firm in the sample period divided by the total number of patents granted to that firm in the sample period. The share of citations
to software patents for each firm is calculated as the number of citations directed to software patents generated by the firm’s non-software IT patent portfolio divided by the total number of citations generated by the
firm’s non-software IT patent portfolio. The tests for differences in means across sectors are performed using one-sided t-tests and are reported in the brackets next to the value of the mean. The difference is signifi-
cant at *** 0.01, ** 0.05, and * 0.1. The first series of asterisks in any given bracket represents the results of a one-sided t-test for differences of means using the sector in question and the sector listed in the row
above, while the second series of asterisks represents the results of a one-sided t test using the sector in question and the sector listed in the row below. For sectors listed in the first row, the first series of asterisks
refers to a comparison with the sector listed in row immediately below, while the second series of asterisks refer to a comparison with the sector listed in the final row. An identical system applies to the interpretation
of asterisks for sectors listed in the final row. The unit of observation for descriptive statistics and statistical tests presented in panel B is a patent. The share of software patents for each sector is computed as the num-
ber of software patents granted to all firms belonging to that sector in the sample period divided by the total number of patents granted to firms in that sector in the sample period. The share of citations to software
patents for each sector is calculated as the number of citations directed to software patents generated by all firms’ non-software IT patent portfolios divided by the total number of citations generated all firms’ non-
software IT patent portfolio. The tests for differences in means across sectors are performed using one-sided t tests and are reported in the brackets next to the value of the mean. The difference significant at ***0.01,
**0.05, and *0.1. The first series of asterisks in any given bracket represents the results of a one-sided t test for differences of means using the sector in question and the sector listed in the row above, while the second

series of asterisks represents the results of a one-sided t test using the sector in question and the sector listed in the row below. For sectors listed in the first row, the first series of asterisks refers to a comparison with
the sector listed in row immediately below, while the second series of asterisks refers to a comparison with the sector listed in the final row. An identical system applies to the interpretation of asterisks for sectors
listed in the final row.

12 Figuring out what fraction of total IT production is accounted for by
our firms is harder because of the far-reaching globalization of IT produc-
tion by the late 1990s. According to the OECD, the top ten IT U.S. firms
in our sample in 1999 had global revenues greater than the entire amount
of IT production in the United States in that year. The picture is similar
for our Japanese firms, which have also taken increasing advantage of
opportunities to offshore production.

13 Depending on the measure, tests of equality are not always statisti-
cally significant when we disaggregate them by country of origin. When
Japanese software intensity is measured by citations to software in non-
software patents, electronics is (insignificantly) more software intensive
than semiconductors.

14 Our main results are robust to using firm-level software intensity
assignments instead of industry classifications.

15 Downloaded from https://sites.google.com/site/patentdataproject/.
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Tokyo Stock Exchange (TSE) code – assignee code concor-
dance previously used in Branstetter (2001), but was manu-
ally updated by matching strings of firm names and strings
of assignee names as reported by the USPTO.

R&D investment—Annual R&D expenditure data for US
firms were collected from Compustat, and a set of self-reported
R&D expenditure data for Japanese firms was collected from
annual volumes of the Kaisha Shiki Ho survey.16 We deflated
R&D expenditures following Griliches (1984), and con-
structed a separate R&D deflator for U.S. and Japanese firms
that weigh the output price deflator for nonfinancial corpora-
tions at 0.51 and the unit compensation index for the same sec-
tor at 0.49. Using data on wage price indexes for service-pro-
viding and goods-producing employees, we constructed a
single unit compensation index for each country, and then
applied the proposed weights and appropriate producer price
indexes to compute the R&D deflators and deflate the R&D
expenditure flows.17

R&D stocks—We calculated R&D capital stocks from
R&D expenditure flows using the perpetual inventory method,

with a 15% depreciation rate.18 We used five presample years
of R&D expenditures to calculate the initial stocks.19

Market value of the firm: The market value of a firm
equals the sum of market value of its equity and market
value of its debt (Perfect & Wiles, 1994). The market value
of equity equals the sum of the value of outstanding com-
mon stock and the value of outstanding preferred stock. The
value of outstanding common (preferred) stock equals the
number of outstanding common (preferred) shares multi-
plied by their price. For U.S. firms, we used year-close
prices, year-close outstanding share numbers, and year-
close liquidating values of preferred capital. For Japanese
firms, the only available share price data were year-low and
year-high prices, and we used the arithmetic mean of the
two to obtain share price for each firm-year combination. In
addition, preferred capital data were not available for Japa-
nese firms, which should not create problems as long as pre-
ferred capital does not systematically vary with time and
across technology sectors. For the market value of debt, we
used total long-term debt and debt in current liabilities. For

TABLE 3.—SOFTWARE INTENSITY BY SECTOR AND FIRM ORIGIN, 1983–2004

A. Software Patent Shares by Sector and Firm Origin

U.S. Firms Japanese Firms

Industry
Number of

Observations Mean SD
Number of

Observations Mean SD

Unit of observation is a firm:
Electronics 22 0.0806 (*/***) 0.1425 43 0.0173 (/***) 0.0195
Semiconductors 41 0.1341 (*/***) 0.1292 12 0.0138 (/***) 0.0213
IT hardware 70 0.2411 (***/***) 0.1699 22 0.0585 (***/***) 0.0329

Unit of observation is a patent:
Electronics 38,902 0.0647 (***/***) 0.2460 28873 0.0247 (***/***) 0.1551
Semiconductors 56,833 0.1324 (***/***) 0.3389 26776 0.0298 (***/***) 0.1700
IT hardware 104,998 0.2337 (***/***) 0.4232 146424 0.0795 (***/***) 0.2705

B. Share of Citations to Software by Non-Software IT Patents by Sector and Firm Origin

U.S. Firms Japanese Firms

Industry
Number of

Observations Mean SD
Number of

Observations Mean SD

Unit of observation is a firm:
Electronics 22 0.0761 (/***) 0.0921 43 0.0435 (/***) 0.0452
Semiconductors 41 0.0895 (/***) 0.0884 12 0.0286 (/***) 0.0334
IT Hardware 70 0.1647 (***/***) 0.1173 22 0.0738 (***/***) 0.0384

Unit of observation is a patent:
Electronics 12,915 0.0617 (***/***) 0.1504 10,537 0.0430 (***/***) 0.1325
Semiconductors 36,389 0.0797 (***/***) 0.1726 11,825 0.0572 (***/***) 0.1507
IT Hardware 53,706 0.1466 (***/***) 0.2326 72,633 0.0877 (***/***) 0.1862

This table compares measures of software intensity of firms in our sample that belong to different subsectors, separately for those firms based in Japan and those based in the United States. The data used to con-
struct measures of software intensity come from the CASSIS patent database maintained by the U.S. Patent and Trademark Office and from the NBER Patent Data Project database. The unit of observation for
descriptive statistics and statistical tests presented in the upper panel is a firm, while it is a patent in the lower panel. For details about the construction of software intensity measures, consult table 2. The tests for dif-
ferences in means across sectors are performed using one-sided t tests and are reported in the brackets next to the value of the mean. The difference is significant at ***0.01, **0.05, *0.1. The first series of asterisks
in any given bracket represents the results of a one-sided t test for differences of means using the sector in question and the sector listed in the row above, while the second series of asterisks represents the results of a
one-sided t test using the sector in question and the sector listed in the row below. For sectors listed in the first row, the first series of asterisks refers to a comparison with the sector listed in row immediately below,
while the second series refers to a comparison with the sector listed in the final row. An identical system applies to the interpretation of asterisks for sectors listed in the final row.

16 Kaisha Shiki Ho (Japan Company Handbooks) is an annual survey of
Japanese firms, published by the Japanese equivalent of Dow Jones &
Company, Toyo Keizai. We thank Kanako Hotta for assistance in obtain-
ing these data from the collections at the School of International Relations
and Pacific Studies of the University of California at San Diego.

17 We obtained these data from the Bureau of Labor Statistics and Sta-
tistics Bureau of Japan, respectively.

18 See Griliches and Mairesse (1984) and Hall and Oriani (2006) for a de-
tailed description and discussion of this methodology. We used several de-
preciation rates between 10% and 30%, with little change in the results.

19 When the expenditure data were not available, we used the first five
years of available R&D expenditure data, ‘‘backcast them’’ using linear
extrapolation, and calculated the initial R&D capital stock based on the
projected R&D expenditures.
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Japanese firms, we used fixed liabilities as a proxy for the
value of long-term debt and short-term borrowings as a
proxy for the value of short-term debt.20

Replacement cost of assets—The replacement cost of the
firm’s assets is the deflated year-end book values of total
assets, where the deflator is a country-specific capital goods
deflator obtained from the Bureau of Labor Statistics and
the Statistics Bureau of Japan, respectively.21

D. Patent Production Function Results

Figure 3 compares the number of patents per firm for the
U.S. and Japanese firms in our sample. We observe that
Japanese firms obtain more non-software IT patents than
their U.S. counterparts. Between 1983 and 1988, the aver-
age number of non-software IT patent applications was
almost identical for Japanese and U.S. firms. Between 1988
and 1993, patent applications by Japanese firms outpaced
those of U.S. firms, after which both grew at a similar pace.
By contrast, Japanese firms file fewer software patents than
their U.S. counterparts, and the difference has grown stea-
dily since the late 1980s, especially after the mid-1990s.

Table 4 reports the estimates of the patent production
functions of U.S. and Japanese IT firms. Our first key result
is presented in figure 4, which plots the pooled OLS aver-
age difference in log patent production per dollar of R&D,
between Japanese and U.S. firms in our sample through
time, controlling for time and sector dummies. We see that
R&D spending by Japanese firms was 70% more productive
than that of their U.S. counterparts during 1983–1988, but
became less and less productive from 1989–1993 onward.
This trend accelerated in the 1990s and early 2000s, with
Japanese IT firms producing 20% fewer patents, controlling
for the level of R&D spending, than their U.S. counterparts
in the period 2000 to 2004.

Figure 5 reports Japan-U.S. differences in patent output
controlling for R&D input by IT sector. In electronics, pre-
viously shown to be the least software intensive and where
average software intensity is similar between U.S. and Japa-
nese firms, Japanese firms were less productive in patent
production in the 1980s and early 1990s, but were catching
up to their US counterparts in the mid- to late 1990s and
early 2000s.22 In semiconductors and IT hardware, which
have significantly higher software intensity than electronics
and where the average software intensity of U.S. firms is
greater than of Japanese firms, Japanese firms exhibited
higher productivity in the mid-1980s, started losing their
advantage by the turn of the 1990s, and started to lag
behind their U.S. counterparts in the middle to the end of
early 2000s.23

Most of the results in table 4 are statistically significant
at the 5% level and become more statistically significant in
more recent time periods. In addition, the results are robust
to changes in estimation techniques and measures. Random
effects and fixed effects estimates are similar, suggesting
that our results are not driven by unobserved firm-specific
research productivity or patent propensity differences. The
dependent variable in these estimations is the log of total
patents applied for by firm i in year t. Unreported estima-
tions show that the results are very similar if we use instead
the log of IT patents, or the log of IT patents excluding soft-
ware patents, or if we weight patents by subsequent cita-
tions or by the number of claims.

E. Accounting for Alternative Hypotheses

Collapse of the Japanese bubble economy at the end of
the 1980s. The shift in relative performance parallels the
slowdown in the Japanese domestic economy at the end of
the 1980s. This domestic slowdown could have led to lower
levels of R&D expenditure by Japanese firms. However, a
simple recession-induced decline in R&D investment can-
not explain our results. We are estimating the productivity
of R&D in producing patents rather than the number of
patents produced. If Japanese firms sought cost savings by
eliminating marginal R&D projects, measured productivity
should be higher, not lower. Budget pressures could also
have led Japanese firms to change their patent propensity,
filing fewer but higher-quality patents outside Japan. How-
ever, estimates using citation-weighted patents yield results

FIGURE 3.—AVERAGE NUMBER OF NON-SOFTWARE IT AND SOFTWARE PATENTS

PER FIRM

20 Perfect and Wiles (1994) suggest that the measurement error in using
book value of debt is modest.

21 Perfect and Wiles (1994) note that different calculation methodolo-
gies result in different absolute replacement cost values but do not seem
to bias coefficients on R&D capital.

22 In the middle of the first decade of the twenty-first century, Japanese
electronics firms received a boost from the rapidly growing sale of so-
called digital appliances, such as DVD recorders, digital cameras, and
LCD televisions. Industry observers, such as Ikeda (2007), warned of
imminent commoditization of these new products, a prediction that has
been borne out in the latter years of the decade.

23 An earlier version of the paper used data that ended in the late 1990s,
raising the possibility that our results were driven by the late 1990s IT
bubble. Extension of our data into the first decade of the new century
shows that this is not the case. We thank an anonymous referee for push-
ing us to extend these data. See Chuma and Hashimoto (2007) for an
alternative discussion of the difficulties of the Japanese semiconductor
industry.
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similar to those reported above. More fundamentally, no
simple story about a post-bubble slowdown in the domestic
economy can explain the observed pattern, wherein the
relative decline in productivity is greater in more software-
intensive segments.

Appreciation of the yen after 1985. The yen appre-
ciated sharply in the mid-1980s and remained much stron-
ger through the mid- to late 1990s.24 These exchange rate
shifts lowered the international competitiveness of Japan-
based manufacturing. However, we do not think that
exchange rate shifts are driving our results. All the seg-
ments of the Japanese IT industry confronted the same yen-
dollar exchange rate, yet the relative innovative perfor-
mance of the different segments varied in ways that are
difficult to explain based on exchange rate considerations
alone. For example, the Japanese electronics sector is argu-
ably the one most likely to be affected by an appreciating
currency; electronics had a much larger ‘‘commodity’’
share in total output, as compared to semiconductors and
hardware. However, it is electronics in which Japan’s rela-
tive performance strengthened the most.

Strong venture capital in the United States, weak venture
capital in Japan. Kortum and Lerner (2001) provide evi-
dence of the strong role played by venture capital–backed
firms in the acceleration of innovation in the United States
in the 1990s. Recent Japanese scholarship (Hamada, 1996;
Goto, 2000; Goto & Odagiri, 2003) stresses the relative
weakness of venture capital in Japan as an impediment to
the growth of science-based industries. While it is certainly
true that new firms adept at software-based innovation
entered the market in the mid- to late 1990s, often with
backing from venture capitalists, our results do not depend
on their inclusion in the sample. For instance, we get simi-
lar results if we remove all U.S. firms that went public after
the Netscape IPO, widely regarded as the start of the VC-
fueled boom in the United States.
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FIGURE 4.—AVERAGE JAPAN-U.S. R&D PRODUCTIVITY DIFFERENCES,
ENTIRE SAMPLE

Based on results from table 4. Reported are pooled OLS estimation coefficients.

24 See Jorgenson and Nomura (2005) and Hamada and Okada (2009)
for a discussion of the impact of exchange rate movements on Japanese
industry and the overall economy.
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Strong university-industry linkages in the United States,
weak linkages in Japan. Goto (2000), Nagaoka (2007),
and many others have suggested that weaker Japanese uni-
versities and weaker mechanisms for university-industry
technology transfer impede growth in Japan’s science-based
industries. We acknowledge the importance of these lin-
kages. However, if university-generated inventions were an
important element in the transformation of the U.S. IT sec-
tor, then corporate patents citing these university-generated
inventions should be especially important in generating our
empirical results. We delete all university-owned inventions
and all corporate patents citing university-owned inventions
from our data; the results do not change.

Technology standards and market dominance Japanese
scholars such as Tanaka (2003) have suggested that the
increasing dominance of U.S. IT firms since the 1990s is
driven largely by U.S. ownership of key technology stan-
dards in the industry. Though owning a major technology
standard may be beneficial, we can delete from our sample
all U.S firms that could plausibly be described as owners of
a major IT technology standard without altering our results.
The most (in)famous standard owner, Microsoft, is never
included in the sample: we do not include firms from the
packaged software industry, because there are very few
publicly traded Japanese firms in that segment.25 If we were
to include the packaged software firms such as Oracle and
Google, the productivity differences would be even more
favorable to the United States.

The same arguments may apply to the decline of one of
Japan’s important technology standards. Throughout the
1980s, the Japanese firm NEC dominated the sales of perso-
nal computers in Japan. NEC pioneered the development

of a PC capable of handling Japan’s complex written lan-
guage. The popularity of the NEC standard created a virtu-
ous cycle in which Japanese software firms and game devel-
opers focused their efforts on NEC-compatible products,
reinforcing NEC’s market dominance. In 1991, a consor-
tium led by IBM Japan introduced DOS/V, an operating
system that allowed IBM-compatible PCs to handle the
Japanese language without any additional IT hardware.26

The introduction of this software ended NEC’s market
dominance and allowed a new group of firms to gain market
share. The firm most obviously affected by DOS/V is NEC,
and our results are robust to the exclusion of NEC. Insofar
as the introduction of DOS/V reduced R&D by other Japa-
nese IT firms by shrinking their markets, this may be
reflected in our Tobin’s q results. However, to the extent
that this market compression induced firms to reduce R&D
spending, they should have cut the marginal projects first,
suggesting, if anything, an increase in R&D productivity
rather than the decrease that we see in the data.

F. Results Based on Private Returns to R&D

We begin by plotting the average difference in Tobin’s Q
between our sample of U.S. and Japanese firms through
time, shown in figure 6. We observe that Japanese firms, on
average, had higher q values than U.S. firms in the mid-
1980s and early 1990s. These differences diminished with
the bursting of the Japanese economic bubble at the dawn
of the 1990s, and Japanese q values lagged throughout the
1990s, especially in semiconductors and, to a lesser extent,
in IT hardware, before recovering somewhat in the early
2000s with the bursting of the U.S. stock market bubble.
Thus, trends in average Tobin’s q values generally parallel
those in patent production.

FIGURE 5.—AVERAGE JAPAN-U.S. PRODUCTIVITY DIFFERENCES, BY SOFTWARE INTENSITY SECTOR

Based on results from table 4. of Appendix A. Reported are selected pooled OLS estimation coefficients.

25 Toward the end of the 1990s, a small number of publicly listed firms,
such as Softbank, that we could classify as software firms appeared on the
Tokyo Stock Exchange. Motohashi (2009) uses a different data set to
explore productivity trends in the Japanese software industry but does not
attempt an international comparison.

26 We thank an anonymous referee for stressing the importance of this
event. Jorgenson and Nomura (2005) discuss this event and show that the
pace of IT price declines in Japan accelerates after the introduction of
DOS/V.
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Moving beyond the descriptive analysis, we regress
Tobin’s q on the ratio of R&D stocks by total assets to
estimate private returns to R&D (shadow value of R&D).
Table 5 reports estimates of equation (12) by period using
nonlinear least squares. It shows that the shadow price of
R&D/assets for U.S. firms was close to 0 and not statisti-
cally significant in most periods but rose to positive and sta-
tistically significant levels by the mid- to late 1990s. On the
other hand, the coefficient on R&D/assets for Japanese
firms has not followed this trend. It hovered just above 0 in
the 1980s but dropped significantly by the mid-1990s and

early 2000s. In these periods, it was much lower than that
of U.S. firms, with the difference statistically significant at
the 5% level. This is consistent with what we observed
when plotting the values of Tobin’s Q through time, except
that we do not observe much of a positive pullback for
Japanese firms in the early and mid-2000s.

Interestingly, this ‘‘reversal of fortune’’ for the market
valuation of U.S. firm R&D appears to be sensitive to the
inclusion of a direct measure of software intensity. Table 5
also reports the results of a regression in which we add a
variable representing the interaction between firm-level

FIGURE 6.—AVERAGE DIFFERENCE IN A RAW MEASURE OF TOBIN’S Q, BY SECTOR

Tobin’s q as calculated in the database, averaged across sector. Calculated as U.S. average subtracted from JP average.

TABLE 5.—TOBIN’S Q REGRESSIONS

A. Tobin’s q Regressions by Period, 1983–2004

Entire Sample 1983–1988 1989–1993 1994–1999 2000–2004
lnQ NLS NLS NLS NLS NLS

RD/Assets 0.1087 0.0158 �0.0564 0.2196 �0.0579
(0.0415)*** (0.1451) (0.0812) (0.0897)** (0.0495)

RD/Assets � Japan �0.1327 0.0008 0.0250 �0.2844 �0.2916
(0.0556)** (0.1516) (0.1129) (0.1310)** (0.1408)**

lnSales 0.0356 0.0198 0.0309 0.0995 0.0966
(0.0039)*** (0.0069)*** (0.0062)*** (0.0059)*** (0.0050)***

Number of Observations 3,571 825 833 1,082 831
R2 0.2986 0.2763 0.2429 0.4414 0.4049

B. Tobin’s Q regressions by period, Including Firm-Level Software Intensity, 1983–2004

Entire Sample 1983–1988 1989–1993 1994–1999 2000–2004
lnQ NLS NLS NLS NLS NLS

RD/Assets �0.2342 �0.2302 �0.2020 �0.1580 �0.2412
(0.0553)*** (0.1554) (0.0945)** (0.1189) (0.0820)***

RD/Assets � Japan 0.1992 0.2227 0.1615 0.0779 �0.1365
(0.0651)*** (0.1593) (0.1208) (0.1483) (0.1478)

RD/Assets � Sof. Int. 0.9752 2.4214 0.7938 0.9375 0.7052
(0.1844)*** (0.6740)*** (0.3688)** (0.3365)*** (0.2968)**

lnSales 0.0419 0.0135 0.0305 0.1093 0.0995
(0.0039)*** (0.0070)* (0.0062)*** (0.0061)*** (0.0049)***

Number of Observations 3571 825 833 1082 831
R2 0.3052 0.2884 0.2465 0.4452 0.4089

The data for regression estimations presented in this table were obtained from Compustat and the Development Bank of Japan for U.S. and Japanese firms, respectively. R&D expenditure data for Japanese firms
come from annual volumes of the Kaisha Shiki Ho survey. The data represent an unbalanced panel of large publicly traded U.S. and Japanese IT firms active in the sample period, 1983–2004. As a consequence of
using an unbalanced panel, total number of observations used in regression estimations can vary between time periods. Regression specifications are estimated in STATA using the nonlinear least squares algorithm.
The dependent value is the log of Tobin’s q, calculated as the ratio of the firm’s market value to the replacement value of its total assets. RD/Assets are calculated as the ratio of the stock of firm’s accumulated R&D
expenditures, calculated using the perpetual inventory method, to the replacement value of the firm’s total assets. The Japan dummy equals 1 if the firm is based in Japan. Standard errors are reported in brackets. For
detailed information about the specification, sample selection, and variable construction, consult the text. Statistical significance at ***0.01, **0.05, and *0.1. For brevity, only coefficients on variables of interest are
reported, while coefficients on some of the control variables may be omitted. Detailed estimation results are available from the authors by request.
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software intensity and R&D/assets.27 This additional
regressor significantly alters our results. The R&D/assets
coefficient for U.S. firms is lower than before, while the dif-
ferences between U.S. and Japanese firms disappear and, in
some periods, reverse with the inclusion of an indicator of
firm-level software intensity. These results support the view
that the relative increase in U.S. performance is related to
software intensity.

Figure 7 compares private returns to R&D for Japanese
and U.S. firms by IT sector, graphically summarizing the
results of table 6. As with patent productivity, we find that
results differ by sector. In electronics, the least software-
intensive sector, the Japanese firms started off with a small
advantage in the 1980s, before increasing it substantially by
the mid-1990s. The reverse is true in IT hardware, the most
software-intensive sector. We report detailed regression
results in tables 6 and 7.28 These tables report the results of
parallel specifications; table 6 incorporates firm fixed effects
into a linear model, while table 7 presents results from a
nonlinear least squares specification that does not include
firm fixed effects.

We conducted several robustness checks. We first esti-
mated versions of equation (12) using NLS and FE estima-
tors, where we directly estimated time trends for private
returns to R&D separately for U.S. and Japanese firms. Table
8 shows that the direction of the trends remains unperturbed.
Private returns to R&D for Japanese firms linger, as before,
around 0, and show a slight negative trend over time, while
private returns to R&D for US firms show a marked and sta-
tistically significant positive trend. Table 6 reports estimates
of a linear approximation using firm fixed effects; table 7
reports estimates obtained using nonlinear least squares.
Again, we observe that the signs of the coefficients remain
qualitatively unchanged in these alternative specifications.

As in the previous section, we consider our results along-
side alternative explanations. We estimated versions of
equation (12) by excluding VC-backed entrants from our
sample and found little qualitative change in our results.

Similarly, we reestimated our regressions by excluding
firms that owned major technological standards during the
sample period (as well as to the exclusion of NTT), and
again found little change in our results.

In order to directly test the robustness of our results to
changes in industry group assignment of firms, we estimated
a linearized version of the regression where we assigned
firms in our sample into groups of the same sizes as those
suggested by the industry classification, but based on both
firm-level shares of software patents and firm-level shares of
citations directed toward software patents. We found our
results to be qualitatively robust to this exercise that allowed
us to estimate the regressions without imposing possibly
restrictive assumptions about firm industry assignments.
Finally, we estimated a version where we split U.S. and
Japanese firms into quartiles according to the firm-level
share of software patents in total patents. We observe that
U.S. firms’ private returns to R&D increase with software
intensity, while they fall in the case of Japanese firms. Inter-
estingly, we also observe that U.S. firms’ private returns to
R&D increase with the software intensity of the sector when
they are also in the top quartile of software intensity. The
same is true for Japanese firms. Conversely, private returns
to R&D decrease with the software intensity of the sector
for firms located in the bottom quartile of software intensity.

Our paper is focused on innovation in the IT sector and
the market returns to IT innovation in that sector rather than
IT production. However, our findings are consistent with
reported industry-level productivity trends. Specifically,
Jorgenson and Nomura (2007) show that in both computers
and electronic components, an initially more productive
Japanese industry is sharply overtaken by its U.S. counter-
part in TFP over the course of the 1990s.29

IV. Discussion

This paper documents three facts. First, IT innovation
has become more software intensive. Second, Japanese
firms rely less on software knowledge in IT hardware
invention than their U.S. counterparts (and produce signifi-
cantly fewer software inventions). Third, the innovation
performance of Japanese IT firms is increasingly lagging
behind, particularly in software-intensive sectors. Together
they point to a link between the changing technology of
technical change in IT and an inability of Japanese firms to
respond adequately to the shift.30

FIGURE 7.—AVERAGE DIFFERENCE IN PRIVATE RETURNS TO R&D, BY SECTOR

Shadow values of R&D as estimated by OLS/FE in table 6. Calculated as U.S. average subtracted
from JP average.

27 We obtain qualitatively similar results if we also include the level of
firm-level software intensity in this specification.

28 In unreported estimates, we obtain similar results if we divide our
sample into the following periods:1983–1988, 1989–1993, 1994–1999,
and 2000–2004.

29 Interestingly, Jorgenson and Nomura find quite different trends in the
communications equipment industry. The firms in our sample include
many major Japanese manufacturers of communications equipment, but
as one of many lines of business. Given our data, we cannot separately
analyze the communications equipment business units of IT firms.

30 As we were writing this paper, we became aware of the work of Cole
(2006) and Cole and Fushimi (2011), who use narrative history and inter-
views with practitioners to suggest that the changing fortunes of the U.S.
and Japanese IT industries are linked to the superior ability of American
firms to exploit software advances in their new product development. Our
quantitative analysis is broadly consistent with their interview-based
description.
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What prevented Japanese firms from using software
advances as effectively as U.S. firms? There are at least two
explanations. The first is a resource constraint argument:
U.S.-based firms have access to a much larger pool of soft-
ware engineers than do their Japanese counterparts. Japanese
firms have not yet been able to overcome their national labor
resource constraints by offshoring their software-intensive
R&D. The second explanation is one rooted in the failure of
Japanese managers to understand and adequately respond to
the changing nature of technological change in IT.

Many studies have pointed out the persistent shortages of
software engineers in Japan, dating back to the 1970s and
1980s.31 This longstanding weakness did not prevent Japa-
nese firms from acquiring a strong market position in IT in
the 1980s (Arrison et al., 1992), but it may have become more

TABLE 6.—TOBIN’S Q REGRESSIONS, BY INDUSTRY AND TIME PERIOD, FIXED EFFECTS, 1983–2004

Electronics Semiconductors IT Hardware

lnQ 1983–1993 1994–2004 1983–1993 1994–2004 1983–1993 1994–2004

RD/Assets �0.3464 �1.1880 �0.7058 0.0609 �0.3933 �0.2278
(0.3059) (0.3865)*** (0.1752)*** (0.0017)*** (0.3095) (0.1496)

RD/Assets � Japan 0.2789 1.1019 0.6043 �0.6449 �0.0335 �0.3502
(0.3040) (0.4283)** (0.1966)*** (0.9356) (0.5447) (0.4091)

Number of observations 603 638 349 530 706 745
R2 0.1158 0.1030 0.0286 0.0796 0.0966 0.1089

The data for regression estimations presented in this table were obtained from Compustat and the Development Bank of Japan for U.S. and Japanese firms, respectively. R&D expenditure data for Japanese firms
come from annual volumes of the Kaisha Shiki Ho survey. The data represent an unbalanced panel of large publicly traded U.S. and Japanese IT firms active in the sample period, 1983–2004. As a consequence of
using an unbalanced panel, total number of observations used in regression estimations can vary between time periods. Regression specifications are estimated in STATA using the fixed effects algorithm. The depen-
dent value is the log of Tobin’s q, calculated as the ratio of the firm’s market value to the replacement value of its total assets. RD/Assets is calculated as the ratio of the stock of the firm’s accumulated R&D expendi-
tures, calculated using the perpetual inventory method, to the replacement value of the firm’s total assets. The Japan dummy equals 1 if the firm is based in Japan. Robust and cluster-corrected standard errors are
reported in brackets. For detailed information about the specification, sample selection, and variable construction, consult the main text. Statistically significant at ***0.01 level, **0.05, and *0.1. For brevity, only
coefficients on variables of interest are reported, while coefficients on some of the control variables may be omitted. Detailed estimation results are available from the authors by request.

TABLE 7.—TOBIN’S Q REGRESSIONS, BY INDUSTRY AND TIME PERIOD, NLS, 1983–2004

Electronics Semiconductors IT Hardware

lnQ 1983–1993 1994–2004 1983–1993 1994–2004 1983–1993 1994–2004

RD/Assets �0.0804 0.3760 �0.2752 0.2919 �0.1399 �0.1412
(0.1216) (0.1995)* (0.0904)*** (0.1098)*** (0.1019) (0.0429)***

RD/Assets � Japan 0.1070 �0.3838 0.1239 �1.5693 �0.3292 �0.3107
(0.1271) (0.2147)* (0.1287) (0.2756)*** (0.3255) (0.2500)

Number of observations 603 638 349 530 706 745
R2 0.4826 0.2414 0.2416 0.6240 0.1431 0.3760

The data for regression estimations presented in this table were obtained from Compustat and the Development Bank of Japan for U.S. and Japanese firms, respectively. R&D expenditure data for Japanese firms
come from annual volumes of the Kaisha Shiki Ho survey. The data represent an unbalanced panel of large publicly traded U.S. and Japanese IT firms active in the sample period, 1983–2004. As a consequence of
using an unbalanced panel, total number of observations used in regression estimations can vary between time periods. Regression specifications are estimated in STATA using the nonlinear least squares algorithm.
The dependent value is the log of Tobin’s q, which is calculated as the ratio of the firm’s market value to the replacement value of its total assets. RD/Assets is calculated as the ratio of the stock of firm’s accumulated
R&D expenditures, calculated using the perpetual inventory method, to the replacement value of the firm’s total assets. The Japan dummy equals 1 if the firm is based in Japan. Standard errors are reported in brack-
ets. For detailed information about the specification, sample selection, and variable construction, see the main text. Statistically significant at *** 0.01 level, ** 0.05, and * 0.1. For brevity, only coefficients on vari-
ables of interest are reported, while coefficients on some of the control variables may be omitted. Detailed estimation results are available from the authors by request.

TABLE 8.—TOBIN’S Q REGRESSIONS, COMPARING TIME TRENDS, BY COUNTRY, 1983–2004

Entire Sample United States Japan

lnQ FE NLLS FE NLLS FE NLLS

RD/Assets �0.0814 �0.0167 �1.1304 �0.5120 �0.0273 0.0115
(0.1257) (0.0442) (0.2753)*** (0.1310)*** (0.0497) (0.0352)

RD/Assets � 1989–93 �0.3011 �0.1369 0.6919 0.1800 �0.1295 �0.0209
(0.1016)*** (0.0552)** (0.2890)** (0.1447) (0.0421)*** (0.0768)

RD/Assets � 1994–99 0.1375 0.1309 1.1809 0.5798 �0.1191 �0.0086
(0.1262) (0.0700)* (0.2753)*** (0.1390)*** (0.0563)** (0.0795)

RD/Assets � 2000–04 0.0611 �0.0396 0.9727 0.3475 �0.1678 �0.0897
(0.1460) (0.0663) (0.2932)*** (0.1366)** (0.2461) (0.1303)

Number of observations 3,571 3,571 1,978 1,978 1,593 1,593

The data for regression estimations presented in this table were obtained from Compustat and the Development Bank of Japan for U.S. and Japanese firms, respectively. R&D expenditure data for Japanese firms
come from annual volumes of the Kaisha Shiki Ho survey. The data represent an unbalanced panel of large publicly traded U.S. and Japanese IT firms active in the sample period, 1983 to 2004. The regression esti-
mation results presented in this table are analogous to those presented in tables IV and IV-2, except that they include a direct estimation of the time trends. Regression specifications are estimated in STATA. A linear-
ized version of the specification is estimated using the fixed effects algorithm, while a nonlinear version of the specification is estimated using the nonlinear least squares algorithm. The dependent value is the log of
Tobin’s q, calculated as the ratio of the firm’s market value to the replacement value of its total assets. RD/Assets is calculated as the ratio of the stock of firm’s accumulated R&D expenditures, calculated using the
perpetual inventory method, to the replacement value of the firm’s total assets. Standard errors are reported in brackets. Robust and cluster-corrected standard errors are reported for specifications estimated using the
fixed effects algorithm. For detailed information about the specification, sample selection, and variable construction, see the main text. Statistical significance at ***0.01, **0.05, and *0.1. For brevity, only coeffi-
cients on variables of interest are reported, while coefficients on some of the control variables may be omitted. Detailed estimation results are available from the authors by request.

31 Finan and Williams (1992) and Cusumano (1991, 2005) discuss the
scarcity of software engineers, as do Fransman (1995), the Japanese Min-
istry of Internal Affairs and Communications (2005), and Kurokawa and
Hayashi (2008).
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important as IT hardware product development became stea-
dily more software intensive.32 The level of local human
capital might not be a constraint if knowledge flowed freely
across countries. However, tapping into foreign knowledge
pools can be difficult (Jaffe, Trajtenberg, & Henderson
1993), especially for Japanese firms.33 Belderbos (2001),
Odagiri and Yasuda (1997), and Belderbos, Fukao, and Kwon
(2006) document the relatively limited extent of Japanese
R&D activity outside Japan during the period under consid-
eration. Japan’s relatively restrictive immigration laws and
its long history as an ethnically homogeneous society miti-
gate against large-scale importation of skilled labor.34

The available data make it difficult to precisely quantify
the differences in software human resources between the Uni-
ted States and Japan, but the gap between the two is clearly
large. Figure 8 presents data from several sources comparing
the flows of new (potential) domestic IT workers during the
crucial years from the mid-1990s through the early 2000s.35

Due to differences in reporting conventions, we aggregate
over IT software- and hardware-related disciplines to pro-
duce a count of total IT bachelors’, masters’, and Ph.D.-level
graduates for both countries. We use data reported by Lowell
(2000) and Kirkegaard (2005) to estimate the number of tem-
porary workers joining the U.S. labor force in ‘‘computer-
related fields’’ under the auspices of an H-1B visa. In figure 8,
we assume that half of all foreign workers newly admitted
to Japan as ‘‘researchers,’’ ‘‘engineers,’’ or ‘‘intracompany
transferees’’ are employed as IT workers in Japan—a far lar-
ger fraction than plausibly holds true in reality.36

Arora, Branstetter, and Drev (2010) describe these data
(and their shortcomings) in greater detail.37 Despite these
caveats, the picture painted by figure 8 is quite striking: the
flow into the domestic IT labor pool grew much faster in
the United States compared to Japan. In 1995, the inflows
into the domestic IT labor pool in the United States were
about 68% greater than those in Japan. By 2001, the inflows
in the United States were nearly three times bigger than
those in Japan, with the difference being driven largely by
H-1Bs. In some of the latter years of the sample period, the
United States was importing more IT specialists per year
than it was graduating from all IT-related bachelors’, mas-
ters’, and doctoral programs combined. Of course, firms are
not confined to their domestic labor pool. Accounting for

FIGURE 8.—ICT HUMAN RESOURCES IN THE UNITED STATES AND JAPAN

ICT GRADUATES AND H1-B IMMIGRANTS ENTERING COMPUTER-RELATED PROFESSIONS, 1995–2001

32 Some Japanese firms, most notably in video games, have maintained
a strong international market positions in software-intensive segments of
IT. However, video game sales are driven by artistic factors as well as
purely technological ones, and Japanese developers have a rich local cul-
tural tradition of manga (a Japanese art form akin to comic books in the
West) and anime (animated films) to draw on.

33 Branstetter (2006) finds a positive but limited impact of U.S. R&D
centers on the research productivity of Japanese firms’ home R&D opera-
tions. Anchordoguy (2000) argues that tapping into foreign pools of soft-
ware knowledge was especially difficult for Japanese firms, given lan-
guage barriers and differences in labor market practices.

34 Kojima and Kojima (2007) examine the available data on Japanese
offshoring of software development to other countries. While the data are
highly problematic, they suggest a very low level of offshoring relative to
the United States—as low as 5% to 10% of the U.S. level—even by the
middle of the first decade of the new century.

35 U.S. data are from the NSF’s SESTAT survey (http://www.nsf.gov
/statistics/recentgrads/) and the annual Survey of Earned Doctorates http:
//www.nsf.gov/statistics/doctorates/. Data for Japan are taken from the
Japanese Ministry of Education, Sports, and Welfare’s Basic School Sur-
vey. We thank Kyoji Fukao of Hitotsubashi University and Takao Kato of
Colgate University, and Anthony D’Costa of Copenhagen Business
School for helping us identify and obtain the Japanese data sources used
in this paper.

36 Japanese statistics track newly registered foreign workers across a
number of broad categories including ‘‘researchers,’’ ‘‘engineers,’’ and
‘‘intracompany transferees.’’ These data are reported annually in the
Shutsu Nyukoku Kanri Toukei Nenpo (Annual Report of Statistics on
Legal Migrants), published by the Japanese Ministry of Justice.

37 Only a fraction of IT graduates enter employment in IT industries in
the countries in which they study, and only a fraction of those who obtain
employment in the IT industry will be engaged in research. Likewise, our
estimates of H-1B temporary workers include individuals employed in IT
companies as well as individuals working for banks and insurance compa-
nies, and only a fraction of the H-1Bs employed in IT companies are
involved in research. These data track (potential) new entrants to the IT
workforce, not the total stocks of workers available for employment in
the sector.
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the level of software offshoring in the United States and
Japan is even harder, but the available data suggest that
consideration of software offshoring would significantly
increase the resource gap implied by figure 8 (Arora et al.,
2010).

In other words, imports of workers and software offshor-
ing may have been a critical source of advantage for U.S.-
based firms. Relatively few of these imported experts may
have been software architects of the highest order, capable
of undertaking transformative innovation. However, creat-
ing, testing, and implementing software for IT innovation
requires both fundamental innovators and programmers
undertaking more routine and standardized kinds of soft-
ware engineering. America’s ability to tap into an increas-
ingly abundant (and increasingly foreign) supply of the lat-
ter may have raised the productivity of the former and
enabled American firms to outpace their rivals (Hunt &
Gauthier-Loiselle, 2010; Kerr & Lincoln, 2010). Arora

et al. (2010) present a simple model in which a more abun-
dant supply of software engineers capable of routine coding
and testing raises the productivity of highly skilled software
innovators and shows how it could imply results for the
relative research productivity of Japanese and U.S. IT firms
that are similar to those documented in this paper.

An alternative hypothesis posits that Japan’s relative
decline in innovative productivity was driven by the failure
of Japanese IT managers to appreciate and respond to the
rising importance of software in IT product development. A
stream of the recent management literature has focused on
how managerial mind-sets, formed through years of experi-
ence, affect the (in)ability of firms to make strategic shifts
when firm environments change (Bettis & Hitt, 1995). In
the economics literature, Nick Bloom, John Van Reenen,
and their coauthors have shown that persistent performance
differences across firms based in different countries could
be driven by differences in management practices (Bloom

FIGURE 9.—SOFTWARE INTENSITY OF PATENTING

This figure compares a measure of firm-level software intensity of patenting for the firms in our sample by the geographical region of their origin and the geographical region of invention. The data used to con-
struct measures of software intensity come from the CASSIS patent database maintained by the U.S. Patent and Trademark Office and the NBER Patent Data Project database. Geography of invention is determined
using geographical locations of all inventors listed on the patent document. T tests for differences in means across geographical groups show that differences are statistically significant at the 0.01 level in the case
of all group pairs. (A) The software intensity variable is calculated as the share of software patents in total patents granted in the sample period, 1983–2004, averaged across all firms belonging to a given region of
origin—region of invention combination. (B) The software intensity of citations variable is calculated as the share of citations made to software patents in total citations made by all patents granted to a firm in
our sample period, 1983–2004, averaged across all firms belonging to a given region of origin–region of invention combination. (C) The software intensity measure used in (A), based on the share of software patents
in total patents, is calculated separately for Japanese firms in the three subsectors of information technology. (D) The software intensity measure used in (B), based on patent citations, is calculated separately for Japa-
nese firms in the three subsectors of information technology. T-tests for differences in means across geographical groups show that differences are statistically significant at the 0.01 level in the case of all group pairs
except in the case of ‘‘electronics,’’ and ‘‘semiconductors’’ where the region of invention is the United States.
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et al., 2012; Bloom & Van Reenen, 2007, 2010). The papers
also show that multinationals tend to bring their manage-
ment practices, both good and bad, with them when they set
up subsidiaries abroad.

These two possible explanations yield different predic-
tions regarding what types of innovative activities Japanese
firms should undertake in Japan and abroad. If they are con-
strained by their software human resources at home, then
Japanese firms will have the incentive to tap into foreign
knowledge and expertise by setting up software-intensive
R&D facilities abroad. But if differences in relative perfor-
mance are because Japanese managers downplay or ignore
the importance of software, then the research output of
Japanese overseas subsidiaries also ought to be less soft-
ware intensive than that of their American counterparts.

Because Japanese and U.S. firms conduct IT R&D (and
generate patents associated with that activity) at home and
in the other country, we can submit these two hypotheses to
a test. What we observe is consistent with the resource con-
straint hypothesis. The share of software patents in total
patents invented in Japan by Japanese parent firms in our
sample is 6%, as reported in figure 9A. However, the share
of software patents in total patents invented in the United
States by Japanese firms is significantly higher, at 24%.
This surpasses even the share of software patents in total
patents invented in the United States by U.S.-based IT
firms, which is approximately 17%. This suggests that Japa-
nese firms are disproportionally likely to engage in software
innovation abroad. In addition, as shown in figure 9B,
patents invented in the United States by the subsidiaries of
Japanese firms are far more likely to cite software innova-
tion than those invented in Japan, and they are even more
likely to cite software than the comparable patents of U.S.-
based firms. As reported in figures 9C and 9D, these pat-
terns hold when we focus on individual sectors—electro-
nics, semiconductors, IT hardware—but are strongest in IT
hardware. It is almost as if Japanese firms are trying to work
around the constraints in their home market by choosing a
very software-intensive style of innovation in the United
States, where the resources exist to support it.

Bloom et al. (2012) present a compelling case that super-
ior American firm management practices may be important
in explaining why American firms deploy IT more effec-
tively than their foreign rivals. In this paper, we find evi-
dence that human resource constraints may be important in
explaining the success of American firms in creating new
IT products. In general, the role of international differences
in access to human resources and the interaction of these
differences with local management practices would appear
to be an interesting and fruitful area for further research.

V. Conclusions, Implications, and Next Steps

In this paper, we document the existence of a software-
biased shift in the innovation process in information tech-
nology. Although widely acknowledged in the computer

and software engineering literature, this shift has received
very little prior attention from economists or management
scholars.38 We provide evidence on the economic impor-
tance of this shift by studying how it affected the innovation
performance of IT firms in the United States and Japan. We
show that this shift has resulted in a deterioration of the
relative innovation performance of Japanese firms, and we
find that this effect is more pronounced in software-inten-
sive sectors. This pattern of relative deterioration and its
concentration in software-intensive sectors is robust to
controls for the different levels of development of venture
capital and formal mechanisms for university-industry tech-
nology transfer in the two countries and to controls for dis-
proportionately American ownership of key technology
standards. Our findings thus provide a largely new explana-
tion for the precipitous global decline of one of Japan’s
once leading industrial sectors, another development that
has received relatively little attention from mainstream
economists.

Finally, we provide evidence that suggests that a con-
strained supply of software knowledge and skills in Japan
might explain the relatively weaker innovation performance
of Japanese IT firms in the 1990s. These findings are parti-
cularly interesting in light of a growing literature that
explores linkages between factor endowments, technologi-
cal change, and industry performance (Acemoglu, 2002;
Dudley & Moenius, 2007), and may provide a useful com-
plement to the growing literature that links the superior per-
formance of American firms in some contexts to superior
management practices (Bloom & Van Reenen, 2010).
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