Social Networks 9 (1987) 171-186 ' . 17
North-Holland )

QAP PARTIALLING AS A TEST OF SPURIOUSNESS *

David KRACKHARDT

Johnson Graduate School of Management, Cornell University

A test of spuriousness for structural data is proposed. Partials are calculated using OLS estimates.
‘The test of significance is based on Hubert's QAP, a nonparametric permutation test. Results of

Monte Carlo simulations indicate that statistical bias and efficiency characteristics of this
procedure are very reasonable.

1. Introduction

Consider the following problem. You are interested in testing a theory
that suggests that people seek out their personal friends for work-re-
lated advice and help. You dutifully collect the appropriate network
data and discover, to your relief (if not amazement) that, indeed, a
significant correlation exists between the friendship network and the
advice network. Now, suppose an organizations scholar reviews your
hard work and claims that your observed correlation is simply due to
the fact that proximity in the organization creates opportunities for
both friendship and advice-relationships. That is, people do not seek
out their friends per se; proximity constrains their friendship choices
just as it constrains their advice choices. The observed correlation,
concludes your organizational colleague, is spurious.

In reflection, one can see the potential for spurious correlations in
most empirical work in network analysis. Networks ate frequently
multiplex in nature and are affected by attributes of the actors. One
may wonder, then, why few have attempted to uncover key relation-
ships by statistically controlling for such spuriousness. But to test for

* 1 wish to thank Ronald Breiger for his heipful comments on earlier drafts of this manuscript.
Reguests for reprints should be sent to the author at the Johnson Graduate School of Manage-
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such spuriousness is particularly difficult, given the inherently interde-
pendent nature of dyadic data in social networks.

This paper evaluates an approach proposed earlier (Krackhardt
1984; Krackhardt and Breiger 1985) to addressing the question of
whether two structural variables are spuriously corrclated with cach
other. This approach combines both traditional least-squares estimating
techniques with Hubert’s nonparametric test, the quadratic assignment
procedure (QAP)!. Our intent in this paper is twofold. First, we
present the mechanics of the procedure in some detail. Second, we test
the procedure’s robustness and statistical performance under varying
population conditions using a series of Monte Carlo simulations.

2. The proposed test of spuriousness
2.1. Calculation of partial correlation in structural variables

We will assume a dependent variable (Y), an independent variable (X),
and a set of possible sources of spuriousness (Z;, Z,,...). Moreover,

we assume these variables are in a traditional structural form as
follows: 2

0 »a2 v Vin-1 Nin

0
v=""

oo Yan-1 Voon
. ’

. . .

Vi Yna  cvr Yam—1 O

! 1t is worth noting that Hubert (1985) has independently developed a separate method of partial
associations using the QAP. In addition, three-variable analyses have been proposed by Hubert
and Golledge (1981), and applied by Nakao and Romney (1984) and Dow and Cheverud (1985).
although their aim was not partialling, per se. Most recently, Sokal, Smouse and Neel (1986, p.
282) have referred to unpublished techniques that appear to be comparable to those proposed
here. However, in none of these studies has the statistical bias of these multivariate methods been
systematically explored either analytically or through simulations.

2 Throughout this paper, we will assume that reflexive relations are not defined. Consequently,
diagonal elements are ignored. However, the analytical scheme presented here is not dependent on
this assumption; partials and their associated tests can be calculated with the diagonals included.
if they are meaningful to the researcher.
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We further assume that the model of interest here is that X and Y
are theoretically related, but that Z,, Z,,... are potential sources of
spuriousness to be controlled for. One way to control for Z,, Z,,... is
to extract the variance from X and Y due to Z,,Z,,..., and then
correlate the residuals of X with the residuals of Y. This is equivalent,
in ordinary linear analysis, to taking the partial correlation between X
and Y controlling for Z,, Z,,... (Kenny 1979).

To specify how the residuc.ls are calculated, it will be convenient first
to transform the above structural representations into vector form:

Na X122 21,4 22,,
M1a X13 21y, 22,4
Y= ‘ . N X= . ’ Zl = . ’ Zz = .
Yo Xnn-1 zl,,',,_, 22,,.,,-|

Finally, in keeping with traditional forms of OLS analysis, define Z
for & controlling variables as follows:
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Using the fundamental OLS solution, the residuals for X and Y are
then calculated as follows:

I
ylﬂ:3 5 it =175
y*=| .7 |=Y-ZB=Y-Z((Z'2)"'Z'Y),

yn*.:l—l
x*=| .7 |=X-ZB=X-Z((Z'2)"'7'X).

Correlating vectors Y* and X* would give us the partial correlation
we are seeking. All that is necessary at this point is an appropriate
inferential test to ascertain whether this correlation is significant.
Unfortunately, the traditional OLS approach cannot be used for such a
test (see Proctor (1969) and Laumann and Pappi (1976: 150) for a
discussion of the problems of significance testing of structural data).
The major difficulty lies in the fact that OLS inference tests assume

, that the observations being tested are independent of one another. In
any structural analysis of N actors, one has N(N — 1) dyadic observa-
tions that are usually assumed to be quite interdependent, rendering the
OLS approach inapplicable.

As an alternative, it has been proposed that the quadratic assign-
ment procedure (QAP) be used to test the significance of an observed
correlation. The QAP is a nonparametric, permutation-based test that
preserves the integrity of the observed structures (i.e., explicitly retains
the interdependency among the dyads). In final preparation for this
test, then, the elements in the residual vectors ¥Y* and X* must be
rearranged into their structural form:
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At this juncture, we will digress to a discussion of QAP as a
hypothesis test.

2.2. The QAP hypothesis test

A growing literature has focused attention on the QAP as a general test
to answer the question of whether two structures are significantly
related to each other (e.g., Mantel 1967; Hubert and Schultz 1976;
Sokal 1979; Baker and Hubert 1981; Hubert 1983; Dietz, 1983). As an
illustration of how QAP works, recall the research question that opened
this paper. The researcher was interested in discovering the relationship
between friendship structures and advice structures. For example,
suppose you have a set of five actors for which you have measured both
friendship choices and advice choices. Figure 1 depicts the results of
our measures in graph form (assume both relations are symmetric). The
question is, are these structural patterns represented in Figure 1 similar
to each other? One might be tempted to say that they look similar, as
they differ only by a line connecting the bottom two points in Figure

B

Figure 1. Sociograms for two relations: (a) friendship, (b) advice.
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Figure 2, Assignment of actors and nodes in sociograms: (a) friendship, (b) advice (permutation
1).

1b. With thought, it is apparent that, while they look fairly similar, one
cannot answer this question without knowing which node in Figure 1a
is associated with (maps onto) which node in Figure 1b.

Figure 2 shows one possible mapping, where the letters A through E
are used to identify the actors in our hypothetical study. Below cach
graph is the corresponding matrix representation of the graph. To
measure the degree to which these two structures are similar, we simply
transform ithe matrices into vector form (Y and X) and correlate the
two vectors. The result is —0.8165, indicating a relative dissimilarity
between the two structures (i.e., one tends to seek advice from those
who are not friends).

Suppose that our labels remain fixed for the “Friends” graph, and
we permute the assignment of labels on the “Advice” graph. There are
120 (= N!) possible mappings of the five actors to the five points on
the graph. The permutation in Figure 3 results in a positive correlation
between the two matrices (r = 0.8165). This case would provide stronger
evidence for the theory. A third permutation, in Figure 4, results in a
correlation with friendship choices of » = 0.0, i.e., the seeking of advice
is independent of those whom one chooses as friends.
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Figure 3. Permutation two of advice relation.
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Figure 4. Permutation three of advice relation.
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Table 1
Distribution of all 120 permutations
Measure of Number of Percent
similarity (r) permutations
0.8165 4 33
0.4082 32 26.7
0.0000 48 40.0
-0.4082 32 26.7
-0.8165 4 33
Weighted Average 0.0 Total: 120 100.0

Table 1 summarizes the results of all 120 possible permutations
(mappings) of actors to nodes in the “Advice” structure. Four of the
possible permutations (3.3% of the total) resulted in the strongest
correlation with friendship choices (» = 0.8165), 32 (26.7%) resulted in
a moderate correlation (0.4082), 48 (40%) resulted in a zero correlation.
and the remaining 30% showed a negative correlation. If our observed
data were those represented in the permutation in Figure 3. then we
would record that our observed results had only a 3.3% chance of
occurring by random assignment of actors to nodes. Our conclusion
would be that our observed results are significant at the 0.033 level
against the null hypothesis of random assignment.

Calculating all 120 possible permutations is tractable in this hypo-
thetical problem. However, the number of possible permutations in
larger networks becomes unmanageable very quickly. Fortunately, an
analytical solution to the problem has been developed (Mante] 1967;
Hubert and Schultz 1976). Given any two N X N matrices, the exact
mean and standard deviation of the distribution of correlations be-
‘tween the one matrix and all possible permutations of the other is a
straightforward function of the cell values in the matrices. The ob-
served correlation, then, can be expressed as a standardized Z-score.
Assuming an approximately normal distribution of correlations under
all permutations, the significance level of the observed correlation then

simply is determined by the appropriate area beyond the Z-score under
the normal curve. 3

3 The assumption of normality in the distribution of the r under all permutations has been the
subject of considerable attention in the literature (Mielke 1979; Costanzo, Hubert and Golledge
1983; Faust and Romney 1985). Deviations from normality can be severe when the data
themselves are badly skewed. In the present case, however, we will concern ourselves with
observations that do not present this problem.
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2.3. QAP as a test of partials,

This same procedure for testing the significance of a pair of structures
can be used to test nonparametrically the significance of a partial
correlation. Recall that the correlation between the vector forms of Y *
and X* is the partial correlation holding Z,, Z,,... constant. By
repeated permutations of the rows and columns of one of the two
matrices, say X*, followed by recalculation of the correlation between
them after each permutation, we can generate a distribution of values
of partial r’s against which the observed r can be compared and from
which a significance level can be inferred. Thus, while the descriptive
statistic is derived from traditional OLS calculations, the inferential
probability is derived nonparametrically. If the QAP test of similarity
between Y* and X* yields a significantly small probability, then one
would conclude that the original correlation between them is not
spurious due to that set of control variables, Z;, Z,,.... Conversely, if
the QAP test indicates an insignificant correlation, then one would

conclude that the original observed correlation between Y and X is
spurious due to Z,, Z,,....

. 3. Testing the QAP partialling procedure: A Monte Carlo simulation

A serious question of potential statistical bias arises from this proposed
procedure (cf., Hubert and Golledge 1981: 220; Krackhardt in press).
Is the technique positively biased, that is, is it too “easy” to get a
significant result, such that completely random data could appear to be
significant more often than 5% of the time (assuming « is selected to be
0.05)7 Or, perhaps, it is negatively biased, such that random data would
appear significant less than 5% of the time. Krackhardt (in press)
demonstrated, for example, that the QAP test, under some restricted
conditions, can be extremely positively or negatively biased.

To assess this possible bias, a series of Monte Carlo simulations was
conducted. By generating random data with known parameters, one
can determine how sensitive this test of spuriousness is. For example,
under the null hypothesis that X and Y are uncorrelated by themselves
in the population but are spuriously correlated through Z, we should
observe a significant (a = 0.05) partial correlation in only 5% of the
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samples drawn from that population. This should be true no matter
how strong the correlation is between Z and either X or Y.

This is the minimum we should expect of any test of spuriousness.
We can ask more of the test: it should also minimize Type Il errors. In
a population where X and Y are only slightly correlated (say, p = 0.1),
we would find “significant” simple correlations more frequently than
in 5% of the samples, with the exact percentage (call it ) depending on
the sample size and power of the test. If Z is introduced into such
populations, such that the observed simple correlation between X and
Y is increased, then we would prefer our test of spuriousness to result
in a partial correlation that is significant in no less than p percent of the
samples drawn from the population. That is, the test should be unbi-
ased, so that under the null hypothesis only about a proportion of the
samples appears significant; yet, at the same time, it should be power-
ful enough to detect underlying correlations in populations where they
do occur.

Both of these criteria, statistical bias and power, were assessed by
drawing samples from the following population model:

Z=g¢,

X=k,Z+e¢,,

Y=kX+k,Z+e,,

where:

z={z,}, i=1,2,...,10, j=1,2,...,10, i#},

x={x,}, i=1,2,...,10, j=1,2,...,10, i#j,

Y={v,}, i=1,2,...,,10, j=1,2,...,10, i#}j,

eache= {¢;}, i=1,2,...,10, j=1,2,...,10, i+#},

and the values of ¢, €,, and €, are all independently and uniformly

distributed from O to 1.

Data were randomly generated from this model. The size of “pure”
correlations among Z, X and Y in the population can be derived from
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the k-weights, as demonstrated below:
Given:

y=kx +e,
cov(x, €) =0,
var(x) = var(e),
then:.

cov(x, y)

Px, y =

Jvar(x) - var(y)

cov(x, y) =cov(x, kx +¢) =k - var(x),

var(y) = var(kx + €) = k*- var(x) + var(e) = var(x) - (k? + 1),
3 k - var(x) _k

Sl fvar(x)(var(x) - (k2 + 1)) et

Py,

\!] - P%, .

The k-weights were chosen such that the “pure” correlations ¢

between the matrices varied in discrete steps in the populations as
follows:

k=

k-weight p

0.0000 0.0
0.1005 0.1
0.2041 0.2
0.3145 0.3
0.4364 0.4
0.5774 0.5
0.7500 0.6
0.9802 0.7
1.3333 0.8

2.0647 0.9

* By “pure” correlation we mean the correlation between the two variables that results if we
exclude all other sources of systematic covariation. Thus, assuming k, =0, k, will give rise to
“pure™ values of pyy. The actual population value of pxy, of course, will be a function of the
combined * pure” contributions of k, and k,.
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Table 2
Percent significant: p, ,=0.

Pex Proportion of 1,000 samples where significant correlation was found
0o - 0.047
0.1 0.044
0.2 0.049
0.3 1 0.061
0.4 0.056
0.5 0.054
0.6 0.051
0.7 0.045
0.8 0.047
0.9 0.044

Thus, k, took on ten values that resulted in population correlations
between Z and X of 0, 0.1, 0.2,...0.9; k, took on six values (higher
values were not necessary, as will be demonstrated later) that resulted
in “pure” population correlations between X and Y of 0, 0.1,...0.5. By
combining these values of k, and k,, 60 populations were defined. One
thousand samples were drawn from each of these populations.

Samples from the null hypothesis model are drawn when &, = 0, that
is, when there is no “pure” contribution of X to Y and any observed
correlation is spurious through Z. If the QAP partialling test of
spuriousness is unbiased, then about 5% of the samples in cach of the
ten populations where k, = 0 should appear significant. The results of
this test are reported in Table 2.

As can be seen from Table 2, very little bias is evident from this
procedure. The proportions of “significant” results ranged from 0.044
to 0.061. Thus, independent of how much variance is contributed by Z,
approximately 5% of the 1,000 samples in each population appeared
significant at the 0.05 level.

The power of QAP partialling is demonstrated by comparing the
proportion of “significant” simple correlations for varying levels of
pxy With the proportions found when Z is contributing spuriously and
then partialled out. The results of this comparison are provided in
Table 3.

As evident in Table 3, the QAP partial sacrifices virtually no
statistical power in the process of uncovering the “truth” about the
underlying relationship between X and Y. For example, when the
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Table 3
Proportion of 1,000 samples where significant correlation was found.

“True” ny

0 0.1 0.2 0.3 04 0.5
No Z in population: 0.047 0.223 0.588 0.903 0.992 1.00
Strength of 0 * 0.229 0.585 0.901 0.990 1.00
contribution 0.1 0.266 0.615 0.908 0.996 1.00
of Z . 0.2 0.246 0.638 0.906 0.995 1.00
(=p.\=py) 0.3 0.232 0.587 0.907 0.992 1.00
0.4 0.254 0.601 0.901 0.994 1.00
0.5 0.242 0.604 0.895 0.987 1.00
0.6 0.258 0600 ~ 0.891 0.992 1.00
0.7 0.246 0.572 0.906 0.992 1.00
0.8 0.233 0.595 0.899 0.992 1.00
0.9 0.226 0.583 0.898 0.991 1.00

* These proportions in the first column can be found in Table 1.

population is characterized by a weak relationship between X and Y
(pxy=0.1), and there is no presence of a confounding Z, then 223 out
of a thousand samples are significant at the 0.05 level. When Z is
introduced at increasing strengths (pzx=pzy=0,0.1,...,0.9), the
probability of finding a significant partial correlation varies little from
this base (range =0.226 to 0.266). When the underlying correlation
between X and Y in the population is 0.2 (with no confounding Z), the
simple correlations are significant in almost 60% of the samples; the
range in probability that the partials are significant is 0.572 to 0.638.
As pyy is increased beyond 0.2, the range of significant partials
becomes even narrower, converging on the proportion found significant
in the simple, unconfounded population.

To summarize, the QAP partialling test of spuriousness proposed
here has been demonstrated to have two desirable properties. First, in
the case of these simple populations of size 10 X 10, the probability of
finding a significant correlation when none exists is approximately
« = 0.05. Second, when a true correlation does exist in the population,
the partialling procedure identifies it as significant with approximately
the same probability as the simple correlation test. This leads us to the
conclusion that the QAP partial test is both relatively unbiased — in the
narrow statistical sense that a equals the true probability of commit-
ting a Type I crror - and as powerful as the simple QAP test.
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3.1. Limitations of simulation results

These results suggest that the QAP partialling procedure is robust and
appropriate under the conditions described by the model presented.
However, it would be a mistake to assume that the partialling tech-
nique would behave so admirably under all other models as well. In
particular, the model used here is characterized by a uniform distribu-
tion of values. If a normal distribution were used, the occasional
“extreme” value observed in samples might result in more instability in
the QAP test. Or, perhaps highly skewed distributions would result in
unstable or otherwise perverse conclusions (see Faust and Romney
1985).

Another issue is that the QAP test is nonparametric. It is based on a
permutation of values rather than on some theoretical distribution. A
clear advantage attributed to such a procedure is that the results should
be unbiased if the data were subject to nonlinear transformations, such
as monotonic or binary transformations. Currently, however, we have
only tested results for continuous data.

And thirdly, all the samples drawn from these models are of order
10 X 10. This was considered a reasonably small network, and larger
ones should behave at least as well (i.e., their standard errors should be
smaller). Smaller networks, such as the 5 X 5 example presented at the
start of this paper, may be more unstable. Again, simulations could be
performed to test how sensitive the bias and statistical power of the
QAP partialling procedure is to smaller sample sizes.

All of these points are fertile ground to be explored in attempts to
discover the boundaries around which the QAP test can be applied.
Given these limitations, however, we are confident that the QAP test of

spuriousness is appropriate for many applications that can be ap-
proximated by this simple model.

4. Conclusion

We began this paper by suggesting that structural analysis may fre-
quently be subject to the criticism that within the multiplexity of
networks lie potential sources of spurious correlations. We have sug-
gested one way in which this criticism may be empirically addressed.
Moreover, we have demonstrated, at least within a narrow but reason-
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able class of models, that the QAP partialling technique is a powerful
and unbiased method of answe.ing simple questions about the spuri-
ousness of observed relationships.

We have left unanswered important questions, such as how does this
technique compare to alternatives, such as that proposed by Hubert
(1985), and how sensitive is the technique to changes in the assump-
tions of the models. But our purpose is not to dictate a universal
solution to a statistical problem. Rather, we wish to draw attention to
the need to consider potential sources of spurious explanations in the
empirical research of network analysts. At a minimum, we hope to

inspire further consideration of these issues and appropriate methods
for addressing them.

References

Baker, Frank B. and J. Lawrence Hubert
1981 “The analysis of social interaction data: A nonparametric technique.” Sociological
Methods and Research 9: 339-361.
Costanzo. C.M., L.J. Hubert and R.G. Golledge

1983 “A higher moment for spatial statistics.” Geographical Analysis 15: 347-351.
Dictz, EL

1983 *Permutation tests for association
32: 21-26.
Dow, M. and J. Cheverud
1985 **Comparison of distance matrices in studies of population structure and genetic micro

differentiation: Quadratic assignment.” American Journal of Physical Anthropology 68:
367-373.

Faust. K. and A.K. Romney

between two distance matrices.” Systematic Zoology

1985 *The effect of skewed distributions on matrix permutation tests.” The British Journal of
Mathematical and Statistical Psychology 38: 152-160.
Hubert, L.

1983 “Inference procedures for the evaluation and comparison of proximity matrices.” In J.
Felsenstein (Ed.), Numerical Taxonomy. New York: Springer-Verlag,
Hubert, J. '
1985 *Combinatorial data analysis: Association and partial association.” Psychometrika 50:
449-4067.
Hubert, LJ. and R.G. Golledge
1981 “A heuristic method for the comparison of related structures.” Journal of Mathematical
Pyychology 23: 214-226, .
Hubert, 1LJ. and 1. Schultz
1976 Quadratic assignment as a general data analysis strategy.” British Journal of Mathemati-

cal and Statistical Psychology 29: 190-241,
Kenny, David A,

1979 Correlation and Causality. New York: Wiley.



186 D. Krackhardt / QAP puriialling

Krackhardt, D.
1984 “Partialling nctworks: An application in organizational behavior.” Paper presented at
the Social Network Conference, Phoenix, Arizona.
Krackhardt, David
in press “A caveat on the use of the quadratic assignment procedure.” Psychometrika.
Krackhardt, D. and R. Breiger
1985 “Comparative advantages of QAP partialling and log lincar analysis of multivariate
network data.” Paper given at Fifth Annual Social Network Conference, Palm Beach,
Florida.
Laumann, Edward O. and Franz Pappi
1976 Networks of Collective Action: A Perspective on Community Influence Systems. New York:
academic press.
Mantel, N.
1967 “The detection of disease clustering and a generalized regression approach.” Cuncer
Research 27: 209-220.
Mielke, P.W.

1979 “On asymptotic non-normality of null distributions of MRPP statistics." Communica-

tions in Statistics ~ Theory and Methods 8: 1541-1550.
Nakao, K. and A.K. Romney

1984 “A method for testing alternative theories: An example from cnglish kinship.” American

Anthropologist 86: 668-673.
Proctor, C.H.

1969 “Analyzing pair data and point data on social relationships, attitudes and background
characteristics of Costa Rican Census Bureau employees.” Social Statistics Scction,
Proceedings of the American Statistical Association, 457-465. .

Sokal, RR. ' s

1979 “Testing statistical significance of geographic variation pattefns.” Systematic Zoology
28: 227-232.

Sokal, R.R., P.E. Smouse and J.V. Neel

1986 “The genetic structure of a tribal population, the Yanomama Indians: XV: Patterns
inferred by autocorrelation analysis.” Genetics 114: 259-278.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

