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of computational models in organizational theory has not been

fulfilled. One reason is that too much was promised, such that
computational models could not possibly deliver. I have argued else-
where that computational models are particularly good at developing
theory—that is, suggesting the logical consequences of a set of assump-
tions (Krackhardt, 2000). Most human-generated theories are limited
to hopelessly simplistic linear additive assumptions about social phe-
nomena, phenomena we all accept to be complex, dynamic, with feed-
back loops that make systemic behaviors very difficult to predict from
a linear model. But, computational models do not prove these theories
they help develop; they are not empirical by that standard. They mere-
ly help the researcher to answer logical “what if” questions. Expecta-
tions that computational models can demonstrate or prove anything be-
yond theory building is asking too much of them and will lead to
disappointment.

The other downfall of computational models has been that they
have often concluded the obvious, conclusions that could have been
derived easily by a human’s limited linear thinking. However, there
have been historical examples to counter this problem, such as March
and Cohen’s Garbage Can model. It is in this spirit, of developing a
theory of diffusion of innovation that incorporates nonlinear dynam-
ics and of developing a theory that has nonintuitive implications for
the diffusion process, that I write this chapter.

g s March has indicated in his foreword to this book, the promise
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It has long been acknowledged that the diffusion of innovations is a
social process. That is, new ideas, new technologies, new management
practices are diffused through a set of relationships that exist or emerge
among actors within an organization or social system (Allen 1977,
Price 1965). As Rogers (1982) noted in his comprehensive review, thou-
sands of studies have been conducted on innovation diffusion, but
there have been relatively few that have shown how the social structure
affects the diffusion process.

There have been notable exceptions to this main thrust, however
(Coleman, Katz, and Menzel 1966; Becker 1970; Burt 1973; Burt 1980;
Carley 1990).These seminal pieces have emphasized how diffusion can
be mapped out through structural features of the social system. For ex-
ample, Coleman, et al., found that diffusion of a prescription drug was
heavily influenced by direct social ties among physicians. Burt (1987),
on the other hand, reanalyzed the same data and concluded that the
diffusion mechanism was better explained by physicians mimicking
each other when they were structurally equivalent (connected to the
same set of third parties) rather than connected to each other directly.

A different stream of research has explored a “threshold” model of
diffusion (Granovetter 1978). In these models, it is assumed that indi-
viduals influence each other toward adopting but that they have differ-
ent thresholds—that is, some individuals will adopt after only a small
proportion of their alters has adopted, while others will not adopt un-
til a large proportion of their alters has adopted. With such a set of as-
sumptions, one can model the diffusion process and recreate the stan-
dard “S” curve that is commonly associated with the diffusion process
(Granovetter 1983, Granovetter 1978, Granovetter and Soog 1988). T.
W. Valente’s (1996) recent work in this area is an excellent adaptation
of this approach. His approach focused on the ego network for predict-
ing adoption rather than on the density of adoptions throughout the
overall network.

Valente empirically showed that early adopters were much more
likely to adopt in the face of few neighbors adopting, and conversely
“laggards” adopted only after a relatively high proportion of neighbors
had adopted. Again, diffusion is mapped out as a function of the struc-
ture of relationships among the adopters of various types.

A third stream of work that has hallmarked the diffusion literature
has employed computer simulation as a modeling technique. The ad-
vantage of the computer is that one can model very complex systems
that analytic or simple theoretical models cannot handle (Krackhardt,
1999). Thus, one can conclude that, if a set of assumptions holds (and
is modeled appropriately), the diffusion rate should take on a particu-
lar shape. This work is epitomized by Carley’s structuralism models of
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group formation and diffusion (Carley 1991, Kaufer and Carley 1990,
Carley and Wendt 1991). These models assume that knowledge and be-
liefs diffuse as a function of what the actors have learned from each
other in the course of structured interactions. Carley has found that in-
teresting and complex dynamics can result by restricting access be-
tween two groups of individuals (Carley 1991). Another stream of work
that explores structural features of diffusion success is that of Abra-
hamson and Rosenkopf (1993, 1997). They have used computer simu-
lations to explore how structural conditions affect the adoption rates
of innovations that have negative consequences for the organization.

A common theme among all of this diffusion research has been to
assume that innovations will eventually diffuse throughout the popu-
lation. Indeed, it is common to explicitly restrict the realm of interest
in diffusion studies to cases in which the innovation successfully dom-
inated the organization:

The diffusion of innovations is the process by which a few members

of a social system initially adopt an innovation, then over time more

individuals adopt until all (or most) members adopt the new idea....

[Valente, 1996:70]

Innovations do not always succeed in diffusing, however. One of the
most notorious examples of a “good” idea that refused to diffuse was
the original PC, first proposed by a group of R&D engineers at IBM
long before any commercial versions were available. The PC promoters
were housed in the guts of IBM’s research center in Tennessee. Twice
they tried to promote the idea within IBM’s structure, and twice they
were defeated, allowing Apple to gain a substantial advantage in the
market. It was not until years later when the PC developers were trans-
planted to a separate location in Florida that the PC flourished as an
IBM product. Following on the work of Abrhamson and Rosenkopf
mentioned earlier, the question I would like to propose is, why do
some innovations succeed when others fail to diffuse in a social sys-
tem? More specifically, under what conditions will such innovations
diffuse and under what conditions will such innovations be stopped?

The Nature of Innovation Diffusions

Before specifying what conditions might be influential in this process,
it is useful to differentiate types of innovation diffusion processes
based on the ease with which they are accepted and adopted. First of
all, consistent with Carley’s work, I consider innovations to be inher-
ently ideational. That is, actors adopt innovations because they come
to believe that it is beneficial to do so. Therefore, the process of inno-
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vation diffusion is one of converting people into the belief that the in-
novation is in fact a good idea.

Given this ideational premise, I suggest that there are two forces that
can lead to such a conversion. First, there is the exogenous inherent
quality of the innovation itself. This force stems from the intrinsic
strength (or failing) of the innovation. It is exogenous in that the eval-
uation that leads to possible conversion is not the result of political, in-
fluential, or other endogenous social forces; rather, that the decision to
adopt or not is based solely on the intrinsic merits of the innovation it-
self. That is, conversion happens because each person independently
and objectively recognizes a better mousetrap when one sees it. I will
refer to this evaluation/conversion process as “rational” to emphasize
its objective and nonsocial process of evaluation (I do not mean to im-
ply anything about the decision maker’s utility function here). This
“rational” evaluation results in one of two extreme behaviors: either
those who are made aware of the innovation immediately see the su-
perior value in the innovation and adopt it; or, those who are made
aware of the innovation immediately see its inferior value and reject it
in favor of the status quo or some other alternative.

The other force is a social one, wherein the innovation’s value is not
so clearly determined by external or objective measures. This force sug-
gests either that the quality of the innovation is ambiguous or that
even if it is objectively demonstrable people can be swayed through a
social or political process to a counter position. Thus, in such cases, in-
novations are valued through a dynamic social process, wherein peo-
ple influence each other as to their evaluation of the “true” value and
as to whether the innovation should be adopted. Innovations that are
subject to this process of evaluation and conversion may be termed
controversial. The conversion force is quite different from the “rational”
ones because potential adopters’ minds can be changed back and forth
as they are exposed to different social forces from supporters on one
side to the detractors on the other.

While it is an empirical question beyond the scope of this chapter to
verify, I will go boldly out on a limb to suggest that most innovations
fall into this latter, controversial category. Most innovations have
identifiable advantages, which supporters of the innovation can point
to, addressing some need or shortfall in the status quo. But the flip side
is that these innovations threaten the status quo. Consequently, there
will be detractors. Few innovations are so clearly and markedly inferior
or superior to the status quo as to overcome this inherent conflict.
Thus, most innovations are controversial and subject to a social pro-
cess of convincing others of their superiority over the status quo.

Early information processing models (e.g., March and Simon, 1958)
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have made similar claims. Organizations accrue competencies by exe-
cuting stable routines to perform frequently-encountered tasks. People
learn by doing; they get stuck in this rut. Innovation based on a new
technology they are unfamiliar with becomes a threat to their knowl-
edge base. Thus, even in cases where technological superiority can be
easily recognized by an outsider, the innovation may be resisted by the
insider whose job must change because of it. For example, France has
proven to be one of the slowest among developed countries to adopt
the internet. The reason for this is probably that the country has had
Minitel since the early 1980s, which is in many ways a lesser technol-
ogy. However, people have experience using Minitel and trust it to per-
form many of the functions that the web offers, and so adoption of the
web has been slow.

Others have made similar claims. For example, Cohen and Levin-
thal’s notion of absorptive capacity suggests that innovation occurs
not simply because the technology is superior but because the firm has
invested in R&D'’s ability to understand and absorb (or perhaps accept)
this new technology. Another example is the work of Brian Arthur and
his colleagues whose collective work has underscored the critical role
of social structure and context in the diffusion process even though
the innovation may have clear technological superiority. Thus, a
strong argument can be made that most innovations are in fact contro-
versial, despite their apparent objective appeal.

Having said that, it may still be that some innovations are more like-
ly to be seen as controversial than others. Indeed, innovations on or-
ganizational procedures and routines, such as re-engineering and
TQM, are almost universally regarded as controversial. Other more
technologically based innovations, such as the Xerox™ photocopying
process, may appear as less controversial. While these distinctions are
not hard and fast, I will restrict myself in the remainder of this chapter
to controversial innovations as the main focus of interest.

We can plot the progression of all three types of innovation diffu-
sion patterns resulting from both rational and social forces in terms of
the rapidity with which they diffuse or retreat. To do this, we note that
for any given time period, ¢, there will exist a proportion of the popu-
lation that will “agree” with the innovation—that is, they hold the be-
lief that the innovation is a good idea. Since we are concerned here
with ideational aspects of innovation, I will call such people adopters
and not differentiate them from people who agree with the innovation
but have not yet behaviorally acted on it. Further, I will assume for the
purposes of simplicity that people either agree or disagree with the in-
novation; that is, I assume everyone can be classified as either an
adopter or a nonadopter. '
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Figure 1. A plot of the progression of all three
types of innovation diffusion patterns.

If we designate the proportion at time t who are adopters as f§f then
we can plot the dynamics of this process for all three innovation types
as in figure 1. The proportion of adopters at time t (§) is represented
on the horizontal axis, while the proportion of adopters at time t + 1
(B*1) is represented on the vertical axis. Any point along the 45° line
would represent a steady state solution, where no changes occur in the
proportion of adopters in the population from one time period to the
next. Points above the line would indicate that the proportion of
adopters was increasing over time; points below the line would indi-
cate that the proportion of adopters was decreasing over time.

In this figure, we see the fundamental difference between rational
and controversial innovation diffusion processes. In the top curve, the
“rationally superior” innovation is plotted. In this case, no matter
what proportion of believers you start with (as long as thereis at least
one adopter in the population), each subsequent time period will have
a higher proportion of converts to the innovation, until everyone is an
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adopter. The bottom curve represents the “rationally inferior” innova-
tion. In this case, no matter. what proportion of exogenously-deter-
mined adopters you start with, there will be fewer during the next time
period, until all the adopters have converted to nonadopters.

The controversial innovation, however, has no automatic outcome.
In this case, there are three possible outcomes, as represented in the S
curve in the middle of figure 1. There is a saddle point on the curve,
marked f;, located on the 45° line, indicating that each subsequent
time period will have the same proportion of adopters. In this case,
people may convert from adopters to nonadopters, but to the extent
that they do they will be exactly balanced by the conversion rate of
nonadopters to adopters, so that no net gain or loss in adoption pro-
portions is observed. The intuition here is that, since adoption is a
function of the social forces around you (rather than personal and ob-
jective experience with the innovation itself), the number of propo-
nents and the number of opponents of the innovation are precisely
balanced at f; so that neither side has the ability to convert more
than the other side. Thus, an unstable equilibrium (standoff) is
reached wherein both sides retain the same strength of support.

But, as we move off of f; we see that there is a pronounced effect
on the outcome. Any starting point below f; results in successively
fewer adopters in each time period, until extinction is reached. Any
starting point above ff;, results in successively more adopters in each
time period, until saturation is reached. Thus, the success of the inno-
vation depends not on the quality of the innovation itself but rather
the ability of the innovators to establish a critical mass of support for
the innovation, f;, after which they are virtually certain that the inno-
vation will eventually dominate the social system.

One important observation should be made here: Once a critical
threshold of density of adopters is reached, one could argue that the
remaining people are simply acting “rationally” by adopting, seeing
that the result is inevitable and not wanting to be left out of the wave
of the future. While this is indubitably possible, such a process is out-
side the scope of the model I am proposing in this chapter. For simplic-
ity’s sake, this model incorporates only a local conversion process, as a
function of who interacts with whom.

In terms of dynamics and equilibria, the two rational innovations
are trivial in their solution. The controversial innovation, on the other
hand, is both interesting and complex. But the question left unan-
swered is, how is it possible for the adopters to attain f;, short of a
massive infusion of exogenously determined support for the innova-
tion? That is, is it possible for a smaller group of adopters to reach g,
and “take over” the organization? The rest of this chapter is devoted to
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the answer to this question. Without relying on any assumptions of
political motives or moves on the part of any of the actors in the sys-
tem, I demonstrate that the. structure of interactions among the par-
ticipants can itself lead to surprisingly stable and counter-intuitive re-
sults To demonstrate this, I draw heavily from the work of Boorman
and Levitt (1980}, who asked a similar question about how is it possi-
ble for altruistic genes to propagate in a population of animals when
the gene itself puts the host at greater risk for survival. While it is not
my intent to explicate their model in this chapter, the curious reader
will find their work to have a similar mathematical basis and very sim-
ilar results to those I uncover for this problem.!

The Model

I start with a set of simple axioms about the diffusion process at the mi-
cro level in our social system. I will use the organization as a metaphor
for any social system to which this diffusion may apply. The organiza-
tion is populated by an arbitrarily large number of two kinds of per-
sons, adopters (those who currently believe in the innovation) and
nonadopters (those who currently do not believe in the innovation).
Within any given time period, each person actively seeks out a set of
others within the local part of the organization in which they current-
ly find themselves and confers with those others on their beliefs about
the innovation. If among those others they find agreement with them
on the value of the innovation, they will retain their own belief about
it. If, on the other hand, they find themselves surrounded by those
who disagree with them, then they will tend to convert to the other
belief (change from being an adopter to being a nonadopter, or vice
versa).

To formalize this model, let us make the following assumptions:

Assumption 1: Each individual adopter (a person who believes in the
value of the innovation) searches randomly through L, others to find
another like-minded individual. Each individual nonadopter (a person
who believes that the innovation does not have value) searches ran-
domly through L, others to find another like-minded individual. I as-
sume that the innovators are more likely to proselytize the status-quo
oriented nonadopters than the converse; therefore, L, > L,,.3

Assumption 2: (The Asch assumption): If in the process of this search,
an individual finds at least one other individual who agrees with them
(i.e., an adopter interacts with one other adopter, or a nonadopter in-
teracts with one other nonadopter), then the individual will retain
their current belief. This assumption acknowledges the work of Asch
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{1951}, who found that it only required one person to agree with the
subjects of his experiments to allow them to retain their beliefs, no
matter how many confederates disagreed with the subjects.

Assumption 3: If an adopter fails to find at least one other adopter in
the course of their search, then the adopter will convert to being a
nonadopter with probability o. This is the probability of conversion
from adopter to nonadopter for those adopters who find themselves
isolated. Again, Asch’s work supports this assumption.

Assumption 4: If a nonadopter fails to find at least one other non-
adopter in the course of their search, then the nonadopter will convert
to being an adopter with probability t. This is the probability of con-
version from nonadopter to adopter for those nonadopters who find
themselves isolated.

These four assumptions are all that are necessary to drive the shape
of the S curve (the “controversial innovation” curve) in figure 1. In par-
ticular, these values will determine how large the threshold f; is. The
larger the threshold to be surmounted, the more difficult it will be to
successfully diffuse the innovation throughout the entire organiza-
tion. The larger L, is relative to L,, the lower will be §;, the larger tis,
the lower will be f§;, the larger o is, the higher will be ;.. But, no rea-
sonable values of these parameters will permit an arbitrarily small mi-
nority of innovators to convert, through this minimalist process, the
entire organization.

Organizational Viscosity

I now introduce the idea of structure into our organization. Embedded
in the prior set of assumptions is the notion that each individual per-
forms a random search through the entire organization. In fact, people
are usually confined in their interactions to those more locally accessi-
ble (Simon 1962). It has been argued elsewhere that structural differen- .
tiation can easily affect the diffusion process (Hagerstrand 1967), al-
though our argument will rely on social structural forces rather than
spatial ones such as Hagerstrand used. For simplicity, I will assume the
organization can be partitioned into subsets, which I will call groups,
and that people only search within their own group. Again, for sim-
plicity, each group will be assumed to contain the same number of
people. Diffusion within each group, then, simply becomes a smaller
problem of the one tackled earlier. Within any group, if the proportion
of adopters exceeds ff;, then the adopters will win over that group;
otherwise, they will become extinct within that group.

Carley (1991), in her study of signal analysis, showed that the pres-
ence or absence of migratory links between groups, and the length of
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the chain connecting two groups, determined the rate and pattern of
adoption. Likewise, if we assume some small degree of mobility among
groups, we offer the opportunity of the problem becoming much more
complex and interesting than one encounters in the case where every-
one is free to interact with everyone else in the organization.

The restrictions on mobility will be monitored through two mecha-
nisms. First, only certain pairs of groups will be characterized as ex-
changing individuals at all. The pattern of these exchange possibilities
will constitute the structure of the permissible flow of people in the or-
ganization. Second, the rate at which individuals are allowed to mi-
grate along these exchange paths from group to group will be con-
trolled by a parameter (v), a rate which reveals the extent of
organizational viscosity.* For purposes of this chapter, we will restrict
ourselves to some simplifying assumptions:

Assumption 5: For each period t, prior to individuals searching for
like-minded others, a certain fraction of the group’s inhabitants will
migrate to another group. The migration rate from group i to group j
will be given as Mii = S,-j, where S;jis a symmetric adjacency matrix des-
ignating the structure of possible exchange relations between all group
pairs, and v is the fraction of the group that migrates to the adjacent
group each period.

It is important to point out that people are not being modeled indi-
vidually here. Rather, the group is the unit of analysis, and the measure
of interest is the proportion of adopters within the group. Moreover,
all groups are assumed to be the same size, and this size does not
~ change over time since movement between groups occurs equally in
both directions.

Dynamic Details

There are two steps in the model. First, a certain proportion of individ-
uals migrate to their new groups. Second, after a migration has taken
place, a certain proportion of individuals may convert to being either
adopters or nonadopters.

Step 1: Migration
We now have enough information to determine the dynamics of this
diffusion process. Let Bf be the proportion of adopters in group i. Let
M;; be the proportion of group i that migrates to group j in one period
(and vice versa). I will refer to all groups that directly exchange people
with group i as groups adjacent to i (i.e., all groups j such that M;; #0).
The fraction of adopters who left due to migration is the sum of the
product of migration rate for each adjacent group and the proportion
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of adopters who originally occupied the group (= Z,Miiﬁi , and the
fraction who remain is one minus this sum. The fraction of adopters
who are added through immigration is simply the sum of the products
of the migration rates of adjacent groups and the proportion of
adopters in those locations (= Z,-Miiﬁ{). Combined, these two factors
give the proportion of adopters who occupy group i at the succeeding
time period but before any conversion takes place:

B =(1-3 , M;B)+(3 , M;B) )

Since all persons are either adopters or nonadopters, then the pro-
portion of nonadopters in group i at a successive time period is 1 - [3,-".

This completes the process of migration. The next step is to consider
what happens to these adopters and nonadopters once migration is
completed, that is, what proportion of adopters and nonadopters are
converted nonadopters and adopters, respectively.

Step 2: Conversion

By assumption 2, we know that conversion only occurs when an indi-
vidual is unable to find another like-minded individual in the process
of their search through L others. I assume random searching within
the confines of the group. The rate of conversion, then, is a function of
the probability that the individual will not encounter a like-minded
individual among the L others.

If the probability of not finding such a person in one encounter is p,
then the joint probability of not finding such a person in a search
among L others is pL. The probability of not finding such a person in
one encounter is 1 minus the proportion of like-minded others. Substi-
tuting this proportion for adopters (equation 1) we can derive the fol-
lowing probability of adopters not encountering another adopter in a
given time period following migration:

p(@)=(1-p)"
= (1—((1—2,~ Mifﬂft)*'z,Mﬁﬁ;Du » %))

For nonadopters, we can substitute their particular search parameter
L, and their own probability of not finding another like-minded non-
adopter:

Pi(ﬁ) = (ﬂit,)L"
= ((I‘Z,Mijﬁit)"'z,Mﬁﬂ;)Ln 3)

The net overall conversion rate, then, is the probability of being isolat-
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Figure 2. An organization, composed of five groups in a chain.

ed from like-minded others (p) times the probability of converting giv-
en this isolation (o or 1) times the proportion in the group after migra-
tion Bor 1 - Bt'). For adopters, this conversion rate is

Ci(a) =B p(a) @
and for nonadopters this conversion rate is
C(n)= 1(1 - /3,.") n(n) ®)

Thus, combining these equations, we find the proportion of adopters
that reside within group i after migration and conversion to be

B = B - G()+ () ©

From these mathematical drivers, it is a straightforward task to cre-
ate simulations of this system to determine the effects of various pa-
rameters and the overall structure. In the following section, I present
simulation results and generate some overriding principles of behavior
of these diffusion systems.

Results

Our intent here is to uncover some conditions under which a small mi-
nority of innovators could overcome the majority in a system where
the only process that matters is conversion due to social isolation. I
start with a simple example that demonstrates how such is possible.
Consider the organization depicted in figure 2. This organization
is composed of five groups, arranged in a chain. The links among the
groups represent the avenues of migration. In each simulation, I will
start by assuming that the adopters dominate one and only one of
the groups. That is, in the initial conditions, one group will contain
100 percent adopters; all other groups will contain 0 percent
adopters. I will call the site that contains 100 percent adopters the
“Mother site” (again, borrowing from Boorman and Levitt). In the
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Iteration f; B, B, B, BS

1 0.9656  0.0469 - 0.0000 0.0000 0.0000
2 0.9473  0.0779 0.0001 0.0000 0.0000
3 09369  0.1012 0.0004 0.0000 0.0000
4 0.9311 0.1203 0.0006 0.0000 0.0000
5 0.9283  0.1367 0.0009 0.0000 0.0000
6 0.9276  0.1515 0.0012 0.0000 0.0000
7 0.9282  0.1653 0.0015 0.0000 0.0000
8 0.9299  0.1784 0.0018 0.0000 0.0000
9 109323 0.1914 0.0021 0.0000 0.0000

10 0.9351 0.2042 0.0025 0.0000 0.0000
20 0.9658  0.3529 0.0085 0.0000 0.0000
30 0.9875 0.5687 0.0272 0.0000 0.0000
40 0.9984  0.8409 0.0886 0.0004 0.0000
50 0.9999  0.9500 0.2169 0.0028 0.0000
100 1.0000 1.0000 0.9775 0.4199 0.0136
134 1.0000 1.0000 1.0000 1.0000 1.0000

Table 1. Chain graph.
Parameters for this simulation: v=0.1; ¢, = 1.00; L, = 6.0; L, = 4.0
current example in figure 2, group #1 is the Mother site.

The fate of the adopters, and the subsequent fate of the innovation
itself, depends on the parameters set for the structure. As an illustra-
tion, I will assign the Mother site to group #1; I will assign a 100 per-
cent conversion rate for those faced with unanimous opposition to
their current beliefs; I will assign modest searching values of 6 and 4
for the adopters and nonadopters; and I will assign a migration rate of
.1 for those groups who are adjacent to other groups. That is, I will as-
sign the following parameter values: L, =6; L, =4;6=1.0;1=1.0; v=
.10. The simulation results are given in table 1.

Listed in this table are the f's for each group, that is the proportion
of adopters in each group, after a number of time periods. For example,
after the first time period, the fraction of adopters in the Mother site
drops to .9656, while it increases in group #2 from 0 to .0469. The pro-
portion of adopters in the Mother site drops slowly until period 7 and
continues to increase from then on. By the end of period 50, the Moth-
er site is virtually all adopters, group #2 is almost all adopters, and
group three is rapidly increasing its proportion of adopters. By the end
of 134 periods, equilibrium is reached* and all five groups become
completely converted to the innovation.
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Iteration  B; B, By B, BS

1 0.9656 0.0469 0.0000  0.0000 - 0.0000
2 0.9473 0.0779 0.0001 0.0000 0.0000
3 09369  0.1012 0.0004 0.0000 0.0000
4 09311  0.1203 0.0006 0.0000 0.0000
S 0.9283 0.1367 0.0009 0.0000 0.0000
6 0.9276 0.1515 0.0012 0.0000 0.0000
7 0.9282 0.1653 0.0015 0.0000 0.0000
8 0.9299 0.1784 0.0018 0.0000 0.0000
9 0.9323 0.1914 0.0021 0.0000 0.0000
10 0.9351 0.2042 0.0025 0.0000 0.0000
20 0.9658 0.3529 0.0085 0.0000 0.0000
30 0.9875 0.5687 0.0272 0.0000 0.0000
40 0.9984 0.8409 0.0886 0.0004 0.0000
50 0.9999 0.9500 0.2169 0.0028 0.0000
100 1.0000 1.0000 0.9775 0.4199 0.0136
134 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2. Chain graph.

Parameters for this simulation: v=0.2; g, t= 1.00; L, = 6.0; L, = 4.0

The dynamic here is important to emphasize. Migration has allowed
the innovation adopters to spread their innovation to an adjacent
group. But, while they are making inroads into this neighboring group,
they are losing out initially in their home base to the nonadopters who
have replaced them. This struggle continues until one of two things
happens: either the rate of depletion/conversion of adopters in the
Mother site overtakes the depletion/conversion rate of nonadopters in
the neighboring sites, or the converse. In the former case, the innova-
tion adopters will eventually dominate the system. In the latter case,
the nonadopters will eventually dominate the system. In this simulat-
ed organization, the adopters win.

Principle of Optimal Viscosity

This outcome is determined by the system and its parameters. But, the
system is surprisingly insensitive to many parameters. For example, if
we change the search parameters to any number of values from 2 to 20
(retaining the constraint imposed by assumption 1 that L, > L,), the
same results hold—that is, in equilibrium the adopters dominate the
entire organization. Moreover, the system is relatively insensitive to
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values of the conversion rates, a and t, which can vary from O to 1.
without affecting the eventual outcome (as long as they do not differ
markedly from each other).6

However, the outcome is quite sensitive to viscosity. Table 2 shows
the results of a simulation with exactly the same parameters and start-
ing conditions as provided in table 1 but with v = .2 instead of .1. In
this case, we can see that by the end of period 23 all of the adopters
have been eliminated from all groups.

Note in particular, that at the beginning of this dynamic process in
rounds 1 and 2, the total number of adopters is increasing. It is only af-
ter round 3 that the proportion of adopters in the system starts to de-
cline. This curvilinear result is in sharp contrast to the dynamic char-
acterized by figure 1, where the long term result is consistent once you
establish a starting point. The difference here is that in figure 1 there is
no structure; each individual has an equal chance of interacting with
any other individual in the entire population. Without structure, the
behavior of the system is simple, deducible without the help of com-
putational methods. But, as I mentioned at the beginning of this chap-
ter, computational models become most interesting when they reveal
behavior that is not intuitive. With differential viscosity and structure
limiting who gets to migrate where and how quickly, the dynamics be-
come complex and counterintuitive. The adopters start to increase in
table 2 because they migrate to neighboring groups that are devoid of
adopters. Their migration rate is matched by the migration rate of non-
adopters who are invading the mother site of adopters. This counter-
invasion eventually cuts off the life line of support, in a sense prevent-
ing the adopters from calling in reinforcements to bolster their
invasion of the nonadopting groups. While the exact point at which
the invasive forces of adopters loses out to the defensive invasion of
the nonadopters is determined by the exact parameter values in the
model, the overall shape of this result is both counter-intuitive and ro-
bust against a wide choice of parameters.

Another outcome is obtained if we use a migration rate of v = .03,
again retaining the same values for all other parameters. In this case,
an equilibrium is reached wherein the Mother site stays dominated by
adopters and the other groups remain predominantly nonadopters
(see table 3). Note that after 19 time periods, the proportion of
adopters at the Mother site has stabilized at .986 and at the adjacent
group #2 at .0273 (the remaining groups remained at .0000 for all time
periods), producing a poly-stable outcome.

Figure 3 plots the effect of v on the equilibrium outcome of the sys-
tem. The vertical axis indicates the average f for the five groups; the
horizontal axis indicates the value of v that produced that p Polystable
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Iteration ﬁl ﬂz [33 B A BS

1 0.9907 0.0133 0.0000 0.0000  0.0000
2 0.9876 0.0195 0.0000 0.0000  0.0000
3 0.9865 0.0229 0.0000 0.0000  0.0000
4 - 0.9861 0.0246  0.0000 0.0000  0.0000
S 0.9800 0.0257 0.0000 0.0000 0.0000
6 0.9860 0.0263 0.0000 0.0000  0.0000
7 0.9860 0.0267 0.0000 0.0000  0.0000
8 0.9860 0.0269 0.0000 0.0000 0.0000
9 0.9860 0.0271 0.0000 0.0000  0.0000

-
o

0.9860 0.0271 0.0000 0.0000  0.0000
0.9800 0.0273 0.0000 0.0000 0.0000 (equilibrium

—
o

Table 3. Chain graph.
Parameters for this simulation: v=0.05; o, 7= 1.00; L, = 6.0; L, = 4.0

outcomes are represented by an average B of about .2—that is, one of
the five groups is dominated by adopters (f= 1); the remaining four
groups are dominated by nonadopters (B = 0). Note that any value of v
below .07 will result in a poly-stable outcome with these structural
conditions. In such cases, as one would expect, the migration rate is so
low that neither position (adopters nor nonadopters) are able to
muster enough forces to infiltrate and take over the dominance of the
other in their already established groups.

Values of v from .08 to .16 result in an equilibrium wherein adopters
dominate (8= 1 for all groups). But the dynamic above this threshold
has an unexpected result. Any value of v greater than .16 will result in
the nonadopters dominating the organization at equilibrium (B = 0 for
all groups). That is, there is a narrow window of opportunity in which
adopters can win, where the migration rate is between the values of .08
and .16. If migration exceeds this window, then all of a sudden the
structural advantage that is enjoyed by the adopters disappears.

One might think that conversion rates would influence the shape of
this graph. It is obvious that lower conversion rates will result in slower
diffusion. But it is not obvious what lower rates of conversion will do
to the shape of the equilibrium curve.

Figure 4 demonstrates these effects for five specific values of s=t (= .2,
.4, .6, .8, and 1.0). As one can see, lowering the conversion rate has the
effect of narrowing the window of opportunity for adopters and shift-
ing this window to the left (that is, lower values of v are required for the
adopters to succeed in diffusing to the entire organization). But the ba-



ViscosiTy MODELs 259

V-poly
V-critical
1L YYYYTYYTY YT
08
0.6 |
04 |
0.2 [ecescees®
v
0.1 0.2 0.3 0.4 0.5

Figure 3. Plot of beta averages for equilibrium states
given different viscosities for chain structure.

sic shape of the curve remains the same: there is a lower region of poly-
stable outcomes, followed by a restricted region in which adopters win,
followed by a substantial region in which nonadopters win.

These results obtain in any chain structure, independent of the
length of the chain. Since this chain can be arbitrarily long, an innova-
tion can come to dominate an organization no matter how small a mi-
nority position they hold. All that is necessary is to control the struc-
ture and viscosity within the organization.

It is not necessary to start with a chain structure to obtain this result,
either. This result is robust over many kinds of structures (although not
all) and parameter values. The result is so common that I propose the
following general principle, the “Principle of Optimal Viscosity:”

The degree of viscosity from one group to another has two threshold

values, v-poly and v-critical, where 0 < v-poly < v-critical < 1. If vis be-

low v-poly, then the result will be polystable, with the Mother site
dominated by adopters and other dominated by nonadapters. If v is
above v-poly but below v-critical, then all sites will become dominat-

ed by adopters. But, if vincreases beyond the v-critical value, then the
adopters will lose out to the nonadopters in equilibrium.
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Figure 4. Plot of beta averages for equilibrium states given different
sigmas and different viscosities for chain structure.

Principle of Peripheral Dominance

It is not always the case that a structure will permit a successful diffu-
sion of the innovation, no matter what the viscosity. That is, the win-
dow of opportunity for adopters is nil (v-poly = v-critical). For example,
consider figure 5, which depicts an organization the same size as in the
previous simulation but structured very differently. In this case, we use
the same parameters we used in the prior model: L,= 6; L, = 4; 6= 1.0;
7= 1.0. The simulation results for v=.0S are provided in table 4; Table
S contains the results for v=.10. In both cases (and in all cases above
v-poly = .03), the nonadopters dominate the organization in equilibri-
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Iteration 3, B, "By B4 By

1 0.8819 0.0133 0.0133 0.0133 0.0133
2 0.7811 0.0168 0.0168 0.0168 0.0168
3 - 0.6845 0.0158 0.0158 0.0158 0.0158
4 0.5876 0.0129 0.0129 0.0129 0.0129
N 0.4888 0.0094 0.0094 0.0094 0.0094
6 0.3877 0.0061 0.0061 0.0061 0.0061
7 0.2846 0.0036 0.0036 0.0036 0.0036
8 0.1823 0.0018 0.0018 0.0018 0.0018
9 0.0900 0.0007 0.0007 0.0007 0.0007

—
o

0.0261 0.0002  0.0002  0.0002  0.0002
0.0000  0.0000 0.0000  0.0000  0.0000 (equilibrium)

—
NS

Table 4. Dense graph.

Parameters for this simulation: v=0.05; o, 7= 1.00; L, = 6.0; L, = 4.0

um. When v drops below .03, poly-stable outcomes are again observed.

What is different about this structure is that the Mother site is locat-
ed in a central position in the structure.” In general, in cases where the
Mother site is more centrally located, the window of opportunity for
the adopters is smaller than it is when the Mother site is located on the
periphery of the structure. This gives rise to the principle of peripheral
dominance:

It is more likely that the innovation will successfully diffuse through-

out the organization if the Mother site is located on the periphery of

an organization’s structure than if the Mother site is located centrally
in the organization’s structure.

Two additional points should be made here. First, the way we know
that there is no “window of opportunity” is by successively cutting the
tolerance into smaller and smaller units to ensure that there is no re-
" gion of successful innovation that may exist between the coarse units
reported in table 4. Second, this search for a narrow window would be
easier if there were a mathematical solution to the derivation of the
equilibrium outcome given a set of parameter values. Unfortunately,
one of the characteristics of complex dynamic feedback systems such
as modeled here is that they do not behave in mathematically tractable
ways. This is precisely why computational models are useful.

Principle of Irreversibility

Another interesting finding in these simulations is that there is an
apparent asymmetry in the process governed by Assumption #1 (L,
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Iteration Bl ﬁz ﬁ3 B A ﬂs

1 0.6494 0.0469  0.0469  0.0469  0.0469

2 0.4074  0.0530 0.0530 0.0530  0.0530

3 0.2276  0.0378 0.0378  0.0378  0.0378

4 0.0956 0.0168 0.0168 0.0168  0.0168

5 0.0210 0.0034  0.0034  0.0034  0.0034

6 0.0011 0.0002 0.0002 0.0002  0.0002

7 0.0000 0.0000 0.0000  0.0000  0.0000

8 0.0000 0.0000 0.0000 0.0000  0.0000

9 0.0000 0.0000 0.0000 0.0000 0.0000 (equilibrium)

Table S. Dense graph.

Parameters for this simulation: v=0.1; 6, 7=1.00; L, = 6.0; L, = 4.0

> L,). This asymmetry makes it almost impossible for the non-
adopters to retake control of the organization once adopters have
dominated it. To be specific, if we were to take an organization dom-
inated by innovators with the exception of the Mother site, which
we populate with nonadopters, the nonadopters would not be able
to diffuse their belief throughout the organization—even though
these are exactly the structural conditions that allowed the adopters
to take over in the first place. As long as adopters retain their prose-
lytizing edge, the organization will remain resistant to a return to a
preinnovation state.
I call this result the principle of irreversibility:

Once an innovation has been successfully diffused throughout the or-
ganization, then it is almost impossible for the process to be reversed to
a state where the nonadopters once again dominate the organization.

Starting with a few very simple but powerful assumptions, we can un-
cover interesting dynamics in a process that may account for the diffu-
sion of innovations within a complex social system. But, the results
clearly depend on the viability of the assumptions we make at the be-
ginning of this chapter. It is worth discussing how critical and realistic
these assumptions are.

First, the model as given in this chapter is deterministic, not
stochastic. It assumes that exactly v fraction of each group moves
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Mother
Site

Figure 5. Dense structure with mother site at center.

along the structured paths provided in the model. It assumes each ac-
tor engages exactly L others in their search for a like-minded soul.
These are not realistic assumptions, perhaps, but they are not critical
either. Stochastic models probably better represent reality, but the de-
terministic counterpart allows one to efficiently model the most likely -
outcome. Stochastic modeling would require modeling the behavior
of each actor individually, making it much more difficult. And per-
haps more importantly, deterministic models are appealing because
they allow conclusions to be deduced instead of statistically inferred.
Along similar lines, one could play with the modeling assumption
that each group has an undetermined number of actors. Rather than
keep track of each individual actor in each group at each stage, the sim-
ulation recounts simply the proportion of the actors in each group that
are adopters vs nonadopters. This simplification makes the results ro-
bust and independent of the number of actors that might populate
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each group. However, it is possible that if each group had a small num-
ber of actors, the dynamics might show signs of instability.

Some assumptions can be relaxed naturally by using alternative pa-
rameter values. For example, the Asch assumption that conversion oc-
curs primarily in cases where the individual finds no one in her imme-
diate environment who agrees with her, can be relaxed by playing with
the sigma and tau parameters. Indeed, it would be an extremely diffi-
cult assumption to defend in today’s age where anyone can find some-
one who agrees with them on just about anything by hooking up to
the internet. However, while I have not explored all possibilities, figure
4 suggests that the general principles derived in this chapter are not
sensitive to a wide variety of parameter values and hence not sensitive
to this assumption.

A more serious limitation is in the assumption that the structure of
interactions does not change L,, L,, v, and the structure M are all in-
variant over time in this model. This is not only unrealistic but clearly
the dynamics would be altered if these parameters were allowed to
change over time periods.

In particular, the principle of irreversibility, as noted before, rests on
the assumption that L, > L,, That is, the adopters are assumed to reach
out and proselytize to more people than the nonadopters are. Indeed,
there is nothing inherent in the nature of the innovation that would
dictate this be so; it is simply an assumption of the model that innova-
tors are perhaps more excited, energetic, and likely to reach out to oth-
ers than noninnovators. However, what makes the process irreversible
is that adopters continue this gregarious behavior even after they have
become the dominant force inside the organization, the new status
quo. One could argue that, once they have reached this dominant po-
sition, the nonadopters become the new innovators by suggesting the
alternative to the new status quo. One could assume that this would
lead them to become more excitable, more energetic, more expansive
in their social ties than the old adopters, who are now fat, happy and
lazy. This could lead them to a reversal of the L,> L, assumption; such
a reversal would destroy this irreversibility principle. Indeed, while re-
laxing this assumption may destroy the irreversibility principle, it may
at the same time model more closely the “fashionable innovation” dis-
cussed by Macy and Strang (chapter 3).

Thus, as with any model, the predictions are in part sensitive to the
veracity of the driving assumptions. One distinct advantage that Car-
ley’s structuralism model has over the viscosity model is that it explic-
itly allows for such changes in parameter values (Carley 1991, Kaufer
and Carley 1993). I would not defend the realism of these assumptions
about lack of parameter changes. Indeed, an interesting extension of
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this model would be to incorporate such dynamics in the model to see
how the system behaved. But, as a first step, this chapter offers insight
into how a system would behave if it were fixed.

The actors in this model are undifferentiated. They have no person-
ality, nor differentiated powers, skills, or demographic characteristics.
We know that such individual characteristics affect probabilities of ties
in various ways (Krackhardt 1992, Krackhardt and Brass 1994, Ibarra
1995). While it was beyond the scope of this chapter, incorporating
these kinds of dynamics into the model could provide a richer insight
into the relationship between structure and diffusion. The Carley and
Hill article in this volume suggest triadic structures that could also in-
fluence exchange and diffusion rates. When these triads create cliques,
then these structures have both liberating and constraining effects that
can profoundly influence change in an organization (Krackhardt
1999). To pursue this even further, the PCANS model provides a frame-
work for describing the complex relationship between people, tasks
and resources (Krackhardt and Carley 1999). Including hypothesized
structures among these three domains could greatly enhance our abil-
ity to understand these dynamics in a much more realistic though
complex model.

A related critical issue is that I have included no assumptions about
the rationality of the actors in these organizations. These actors did
not cajole, persuade, intimidate, or in any other way act to further
their own interests or positions. They were passive actors, whose deci-
sions to adopt or not adopt were a formulaic function of the positions
taken by others they happened to run into.

Again, this is clearly an unrealistic assumption. Nonetheless, my
purpose was not to model strategies that advocates might take to win
a controversial battle. Rather, my purpose was to illuminate structural
conditions under which changes might easily take place in the absence
of such strategic behavior. If the principles uncovered in this chapter
work in the absence of purposive behavior on the part of the organiza-
tional participants, then how much easier is the job of the purposive
actor trying to diffuse the innovation if they could control the struc-
ture of organization and the viscosity of its mobile participants?

This last question suggests a use for this modeling procedure. There
is a natural tendency to attribute success of a political battle to the at-
tributes of the winner(s). But, as Schelling (1978) has shown, some-
times simpler mechanical rules of micro behavior can adequately ex-
plain the phenomena of interest at the macro level. If we can identify
structural constraints that by themselves predispose an outcome usual-
ly attributed to the wiles of the actors, then perhaps this will force us
to look at other sources of (structural) explanations of outcomes that



266 KRACKHARDT

do not rely on dangerous tautologies such as “the innovators won be-
cause they had a better idea” or “the innovation diffused because the
adopters were better at persuading everyone of the value of their idea”.
More modeling of this kind may be a useful way to wean us from such
easy but uninformative theorizing (Mayhew 1980).

In closing, I quote from Jim March’s introduction to this book:
“The survival of infant ideas, like the survival of infant humans, re-
quires a social structure that buffers them from short-run and local
selection pressures.” He is referring to the field of computational
modeling, the thrust of this book. But he could easily have been sum-
marizing this article. Indeed, computational modeling is a controver-
sial innovation, one that has the potential to diffuse widely. March
points to its failure to do so the first time around (some 30 years ago),
but perhaps that could be attributed to the fact that it was too cen-
tral, migrating too quickly from the Carnegie Mellon University
mother site. Perhaps this time around, with computational modeling
establishing a firm foothold on the periphery, with a few carefully
chosen groups forming at selected outposts, with its participants ac-
tively reaching out in the literature and academic conferences advo-
cating this new form of scientific inquiry, perhaps this time around it
will succeed.
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Notes

1. Interesting extensions of these ideas—especially viscosity-have been made into
such varied areas as biology (Pollock 1989a, 1989b), game theory (Myerson, Pollock,
and Swinkels 1991, Pollock and Lewis 1993) and school desegregation (Granovetter
1986). The central theme around all of this work is that structuring (restricting) in- -
teractions within any system can produce unexpected results that are not possible
when the system is unrestricted.

2. I'am indebted to conversations with Joel Podolny for contributing this important
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insight. Boorman and Levitt (Boorman and Levitt 1980) had used only one L param-
eter in their exploration of the diffusion of genetic altruism within a species—that
is, they assumed that phenotypically rionaltruistic critters did no searching for other
nonaltruists. Podolny, in collaboration with Peter Bearman (Bearman and Podolny
1986), explored a model of religious conversion in Medieval Europe using two L pa-
rameters, one for each group. They observed dynamics similar to those found by
Boorman and Levitt and those reported in this chapter.

3. Viscosity is a term drawn from fluid dynamics which refer to the lack of ability of
a liquid to flow. Thus, a highly viscous fluid moves very slowly. I will use the term
in a similar vein, although the parameter v will take on its highest values when mo-
bility is maximized, not minimized. One may think of the parameter v as standing
for velocity rather than viscosity, strictly speaking.

4. Equilibrium is defined in this chapter operationally as no group changes its by
more than 10-6 from the previous iteration.

5. It is true that one can virtually determine the outcome in favor of the adopters or
the nonadopters by setting differential conversion probabilities for adopters and
nonadopters. If adopters have a high probability of converting and nonadopters do
not, then nonadopters will win in spite of any structural advantages. The converse
is also true. However, these situations describe “rational” innovations rather than
controversial innovations. That is, if an individual is more easily swayed to one po-
sition or the other, then it seems reasonable to assume that it was due to some ex-
ogenous force, such as the inherent quality of the innovation, rather than social in-
fluence.

6. It should be noted that by “central” I mean at a location that minimizes the aver-
age path distance to all other nodes—or “closeness” centrality (Freeman 1979). This
should not be confused with “degree” centrality, or the number of other groups that
are adjacent to the focal group. In fact, this result for “closeness” centrality obtains
even when the central node has fewer ties than other nodes, such as in classic “bow
tie” structure (Krackhardt and Hanson 1993).
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