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Summary. Network models are widely used to represent relations between interacting units or
actors. Network data often exhibit transitivity, meaning that two actors that have ties to a third
actor are more likely to be tied than actors that do not, homophily by attributes of the actors
or dyads, and clustering. Interest often focuses on finding clusters of actors or ties, and the
number of groups in the data is typically unknown. We propose a new model, the latent position
cluster model , under which the probability of a tie between two actors depends on the distance
between them in an unobserved Euclidean ‘social space’, and the actors’ locations in the latent
social space arise from a mixture of distributions, each corresponding to a cluster. We propose
two estimation methods: a two-stage maximum likelihood method and a fully Bayesian method
that uses Markov chain Monte Carlo sampling. The former is quicker and simpler, but the latter
performs better. We also propose a Bayesian way of determining the number of clusters that
are present by using approximate conditional Bayes factors. Our model represents transitivity,
homophily by attributes and clustering simultaneously and does not require the number of clus-
ters to be known. The model makes it easy to simulate realistic networks with clustering, which
are potentially useful as inputs to models of more complex systems of which the network is part,
such as epidemic models of infectious disease. We apply the model to two networks of social
relations. A free software package in the R statistical language, latentnet, is available to analyse
data by using the model.

Keywords: Bayes factor; Dyad; Latent space; Markov chain Monte Carlo methods; Mixture
model; Transitivity

1. Introduction

Networks are widely used to represent data on relations between interacting actors or nodes.
They can be used to describe the behaviour of epidemics, the interconnectedness of corporate
boards, networks of genetic regulatory interactions and computer networks, among others.
In social networks, each actor represents a person or social group, and each link, tie or arc
represents the presence or strength of a relationship between two actors. Nodes can be used
to represent larger social units (groups, families or organizations), objects (airports, servers or
locations) or abstract entities (concepts, texts, tasks or random variables).

Social network data typically consist of a set of n actors and a relational tie yi,j, measured on
each ordered pair of actors i, j =1, . . . , n. In the simplest cases, yi,j is a dichotomous variable,
indicating the presence or absence of a relation of interest, such as friendship, collaboration or
transmission of information or disease. The data are often represented by an n×n sociomatrix
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Y . In the case of binary relations, the data can also be thought of as a graph in which the nodes
are actors and the (directed) edges are {.i, j/ : yi,j =1}. When .i, j/ is an edge we write i→ j.

A feature of most social networks is transitivity of relations whereby two actors that have
ties to a third actor are more likely to be tied than actors that do not. Transitivity has been
extensively studied both empirically and theoretically (White et al., 1976). Transitivity can lead
to some clustering of relationships within the network.

The likelihood of a tie usually depends on attributes of the actors. For example, for most
social relations the likelihood of a relationship is a function of the age, gender, geography, race
and status of the individuals. In addition, ties are often more likely to occur between actors that
have similar attributes than between those who do not, a tendency that we call homophily by
attributes (Lazarsfeld and Merton, 1954; Freeman, 1996; McPherson et al., 2001). Although
homophily by attributes usually implies increased probability of a tie, the effect may be reversed
(e.g. gender and sexual relationships).

Many social networks exhibit clustering beyond what can be explained by transitivity and
homophily on observed attributes. This can be driven by homophily on unobserved attributes
or on endogenous attributes such as position in the network (Wasserman and Faust, 1994),
‘self-organization’ into groups or a preference for popular actors. Often the key questions in
a social network analysis revolve around the identification of clusters, but conclusions about
clustering are usually drawn by informal visual examinations of the network rather than by
more formal inference methods (Liotta, 2004).

Existing stochastic models struggle to represent the three common features of social networks
that we have mentioned, namely transitivity, homophily by attributes and clustering. Holland
and Leinhardt (1981) proposed a model in which each dyad—by which we mean each pair of
actors—had ties independently of every other dyad. This model was inadequate because it did
not capture any of the three characteristics. Frank and Strauss (1986) generalized it to the case
in which dyads exhibit a form of Markovian dependence: two dyads are dependent, conditional
on the rest of the graph, only when they share an actor. This can represent transitivity, although
not the other two characteristics. Exponential random graph models generalize this idea further
and can represent some forms of transitivity (Snijders et al., 2006).

Models based only on the distribution of the number of edges linking to the actors, or degree
distribution, are popular in physics and applied mathematics; for a review see Newman (2003).
These are also quite restrictive and often do not model any of the three key features of network
data that we have mentioned (Snijders, 1991).

The seminal work on structural equivalence by Lorrain and White (1971) motivated statis-
tical procedures for clustering or ‘blocking’ relational data (blockmodels). Blocking consists of
a known prespecified partition of the actors into discrete blocks and, for each pair of blocks, a
statement of the presence or absence of a tie within or between the blocks. This requires knowl-
edge of the partition, which will often not be available. Breiger et al. (1975) and White et al.
(1976) developed and compared alternative algorithms. Subsequent work in this area has been
on deterministic algorithms to block actors into prespecified theoretical types (Doreian et al.,
2005). Here we focus on stochastic models for networks, which seem more appropriate for many
applications.

Fienberg and Wasserman (1981) developed a probabilistic model for structural equivalence
of actors in a network, under which the probabilities of relationships with all other actors are
the same for all actors in the same class. This can be viewed as a stochastic version of a block
model. It can represent clustering, but only when the cluster memberships are known. Wass-
erman and Anderson (1987) and Snijders and Nowicki (1997) extended these models to latent
classes; the difference is that these latent class models do not assume cluster memberships to
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be known, but instead estimate them from the data. Nowicki and Snijders (2001) presented
a model where the number of classes is arbitrary and unknown. The model assumes that the
probability distribution of the relation between two actors depends only on the latent classes to
which the two actors belong and the relations are independent conditionally on these classes.
These models do capture some kinds of clustering, but they do not represent transitivity within
clusters or homophily on attributes. Tallberg (2005) extended this model to represent homophily
on observed attributes.

The idea of representing a social network by assigning positions in a continuous space to the
actors was introduced in the 1970s; see, for example, McFarland and Brown (1973), Faust (1988)
and Breiger et al. (1975), who used multidimensional scaling to do this, and this approach has
been widely used since (Wasserman and Faust, 1994). A strength of this approach is that it takes
account of transitivity automatically and in a natural way. A disadvantage is that a dissimilar-
ity measure must be supplied to the algorithm for each dyad, and many different dissimilarity
measures are possible, so the results depend on a choice for which there is no clear theoretical
guidance.

The latent space model of Hoff et al. (2002) is a stochastic model of the network in which
each actor has a latent position in a Euclidean space, and the latent positions are estimated by
using standard statistical principles; thus no arbitrary choice of dissimilarity is required. This
model automatically represents transitivity and can also take account of homophily on observed
attributes in a natural way. This approach was applied to international relations networks by
Hoff and Ward (2004) and was extended to include random actor-specific effects by Hoff (2005).
A similar model was proposed by Schweinberger and Snijders (2003), but using an ultrametric
space rather than a Euclidean space.

Here we propose a new model, the latent position cluster model, that takes account of tran-
sitivity, homophily on attributes and clustering simultaneously in a natural way. It extends the
latent space model of Hoff et al. (2002) to take account of clustering, using the ideas of model-
based clustering (Fraley and Raftery, 2002). The resulting model can be viewed as a stochastic
blockmodel with transitivity within blocks and homophily on attributes. It can also be viewed
as a generalization of latent class models to allow heterogeneity of structure within the classes.

In Section 2 we describe the latent position cluster model. In Section 3 we give two differ-
ent ways of estimating it. One is a two-stage maximum likelihood estimation method, which is
relatively fast and simple. The other is a fully Bayesian method that uses Markov chain Monte
Carlo (MCMC) sampling; this is more complicated but performs better in our examples. In
Section 4 we propose a Bayesian approach to choosing the number of groups in the data by
using approximate conditional Bayes factors. In Section 5 we illustrate the method by using two
social network data sets.

2. The latent position cluster model for social networks

The data that we model consist of an n×n sociomatrix Y , with entries yi,j denoting the value
of the relation from actor i to actor j, possibly in addition to covariate information X={Xi,j}.
We focus on binary-valued relations, although the methods in this paper can be extended to
more general relational data. Both directed and undirected relations can be analysed with our
methods, although the models are slightly different in the two cases.

We assume that each actor has an unobserved position in a d-dimensional Euclidean latent
social space, as in Hoff et al. (2002). We then assume that the presence or absence of a tie between
two individuals is independent of all other ties, given the positions Z = {zi} in social space of
the two individuals. Thus
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P.Y |Z, X,β/=∏
i�=j

P.yi,j|zi, zj, xi,j,β/, .1/

where X={xi,j} denotes observed characteristics that may be dyad specific and vector valued,
and β denotes parameters to be estimated. We model P.yi,j|zi, zj, xi,j,β/ by using a logistic
regression model in which the probability of a tie depends on the Euclidean distance between
zi and zj in social space:

log-odds.yi,j =1|zi, zj, xi,j,β/=βT
0 xi,j −β1|zi − zj|, .2/

where the log-odds of an event A is log-odds.A/= log[P.A/={1 −P.A/}]. The model accounts
for transitivity, through the latent space, as well as homophily on the observed attributes X. To
identify the scale of the positions and β0 and β1, we restrict the positions to have unit root mean
square: √(

1
n

∑
i

|zi|2
)

=1:

To represent clustering, we assume that the zis are drawn from a finite mixture of G multi-
variate normal distributions, each representing a different group of actors. Each multivariate
normal distribution has a different mean vector, and a spherical covariance matrix, with var-
iances that differ between groups. Thus

zi ∼
G∑
g=1

λg MVNd.μg,σ2
gId/, .3/

where λg is the probability that an actor belongs to the gth group, so that λg �0 .g=1, . . . , G/

and ΣG
g=1 λg=1, and Id is the d ×d identity matrix. The choice of spherical covariance matrices

is motivated by the fact that the likelihood is invariant to rotations of the latent social space, so
it seems reasonable that the model be specified independently of the co-ordinate system. Model
(3) was proposed as a model for clustering of observed variables by Banfield and Raftery (1993).

3. Estimation

We propose two different estimation methods for the latent position cluster model. The first is
a two-stage method that first computes the maximum likelihood estimator of the (non-cluster-
ing) latent space model, and then computes the maximum likelihood estimator for the mixture
model applied to the resulting estimated latent positions. This is fast and relatively simple, but
it does not take advantage of the clustering information when estimating the latent positions.
The second method is fully Bayesian and uses MCMC sampling; it estimates the latent posi-
tions and the clustering model simultaneously. This is more demanding computationally and
algebraically than the first method, but it performs better in our examples.

3.1. Two-stage maximum likelihood estimation
The first stage is to carry out maximum likelihood estimation of the latent positions for the (non-
clustering) latent space model of Hoff et al. (2002), as described there. This is fairly straightfor-
ward because the log-likelihood is convex as a function of the distances between actors, although
not as a function of the actors’ positions. One can thus rapidly find estimates of the distances,
and then find a set of latent positions that approximate them by multidimensional scaling. This
gives a good starting-point for a non-linear optimization method.
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The second stage is to find a maximum likelihood estimator of the mixture model condition-
ally on the latent positions that are estimated at the first stage. This can be done by using the EM
algorithm (Dempster et al., 1977). It has been implemented for model (3) in a clustering context
in the R package mclust (Fraley and Raftery, 1998, 2002, 2003). The likelihood function for
model (3) does not have a unique local maximum, and the local maximum that is found by the
EM algorithm can depend on the starting values. Here we use starting values from hierarchical
model-based clustering (Banfield and Raftery, 1993).

This estimation method is fast and simple, and yields a close match between the estimated
latent positions and cluster memberships. However, by not estimating the latent positions and
the cluster model at the same time, we lose information from the cluster structure that may be
useful in estimating the latent positions, and we lose information on the uncertainty about the
latent positions that can be useful in clustering. We now describe a simultaneous estimation
method that does not have these disadvantages.

3.2. Bayesian estimation
Our second method consists of fully Bayesian estimation of the latent position cluster model
given by equations (1)–(3), using MCMC sampling. We introduce the new variables Ki, equal
to g if the ith actor belongs to the gth group, as is standard in Bayesian estimation of mixture
models (e.g. Diebolt and Robert (1994)).

We specify prior distributions for the parameters β= .βT
0 ,β1/T, λ= .λ1, . . . ,λG/, σ2

g and μg,
as follows:

β∼MVNp.ξ, Ψ/,

λ∼Dirichlet.ν/,

σ2
g

IID∼ σ2
0 Invχ2

α, g=1, . . . , G,

μg
IID∼ MVNd.0,ω2Id/, g=1, . . . , G,

where ξ, Ψ, ν= .ν1, . . . , νG/, σ2
0, α and ω are hyperparameters to be specified by the user.

We set νg =3, which puts low probability on small group sizes, and ξ=0 and Ψ=2I, which
allow a wide range of values of β. We take α= 2 and σ2

0 = 0:103 (the fifth percentile of the
χ2

2-distribution), which implies a prior density on σ2
g that has 90% of its mass between 0.017

and 1, corresponding to groups whose standard deviation can be as small as 13% of the average
radius of the data. Finally, we specify ω2 =2, which ensures that the prior density of the means
is relatively flat over the range of the data.

Our MCMC algorithm iterates over the model parameters with the priors given above, the
latent positions zi and the group memberships Ki. Where possible we sample from the full con-
ditional posterior distributions as in Gibbs sampling; otherwise we use Metropolis–Hastings
steps. Let ‘others’ denote those of the parameters, latent positions and group memberships that
are not explicitly specified in the following formulae. The full conditional posterior distributions
are

zi|Ki =g, others∝φd.zi;μg,σ2
gId/ P.Y |Z, X,β/, i=1, . . . , n, .4/

β|Z, others∝φp.β; ξ, Ψ/ P.Y |Z, X,β/, .5/

λ|others∼Dirichlet.m+ν/, .6/
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μg|others∼MVNd

(
mg z̄g

mg +σ2
g=ω

2 ,
σ2
g

mg +σ2
g=ω

2 I

)
, g=1, . . . , G, .7/

σ2
g |others∼ .σ2

0 +ds2
g/ Invχ2

α+mgd
, g=1, . . . , G, .8/

P.Ki =g|others/= λg φd.zi;μg,σ2
gId/

G∑
r=1

λr φd.zi;μr,σ2
r Id/

, i=1, . . . , n, g=1, . . . , G, .9/

where

mg =
n∑

i=1
I[Ki=g],

s2
g = 1

d

n∑
i=1

.zi −μg/
T.zi −μg/I[Ki=g],

z̄g = 1
mg

n∑
i=1

ziI[Ki=g],

and φd.·;μ, Σ/ is the d-dimensional multivariate normal density.
Our algorithm is then as follows.

Step 1: use Metropolis–Hastings steps to sample Zt+1, updating each actor in random order.

(a) Propose ZÅ
i ∼MVNd.Zit , δ2

ZId/.
(b) With probability equal to

P.Y |ZÅ, X,βt/ φd.ZÅ
i ;μKi ,σ

2
Ki

Id/

P.Y |Zt , X,βt/ φd.Zit ;μKi ,σ
2
Ki

Id/
,

set the ith element of Zt+1 to ZÅ
i . Otherwise set it to Zit .

Step 2: use Metropolis–Hastings steps to sample βt+1.

(a) Propose βÅ ∼MVNd.βt , δ2
βIp/.

(b) With probability equal to

P.Y |Zt+1, X,βÅ/ φp.βÅ; ξ, Ψ/

P.Y |Zt+1, X,βt/ φp.βt ; ξ, Ψ/
,

set βt+1 =βÅ. Otherwise set βt+1 =βt .

Step 3: update Ki, μg, σ2
g and λg from expressions (6)–(9).

The proposal distribution variance parameters, δZ and δβ , are set by the user to achieve good
performance of the algorithm. On the basis of some experimentation, we used δZ = 10 and
δβ =0:5.

3.3. Identifiability of positions and cluster labels
As the likelihood is a function of the latent positions only through their distances, it is invariant
to reflections, rotations and translations of the latent positions. The likelihood is also invariant
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to relabelling of the clusters, in the sense that permuting the cluster labels does not change the
likelihood. This is often referred to as the label switching problem (Stephens, 2000).

We resolve these non-identifiabilities (or near non-identifiabilities in the Bayesian context)
by post-processing the MCMC output. One simple two-stage approach to this would be as
follows. First carry out a Procrustes transformation (Sibson, 1979) of each posterior draw of
the latent positions to resolve the invariance to reflections, rotations and translations, following
Oh and Raftery (2001) and Hoff et al. (2002). The target configuration would be the positions
that are produced by the two-stage maximum likelihood procedure. Second, use the relabelling
algorithm of Celeux et al. (2000) to solve the label switching problem.

Instead, however, we adopt a framework that is aimed at minimizing the Bayes risk relative
to a Kullback–Leibler loss. The main idea is to find a configuration with distribution that is
close to the corresponding ‘true’ distribution in terms of Bayes risk. To do this, we post-process
the MCMC sample as follows.

(a) Find the positions of the actors that minimize the estimated Bayes risk among all posi-
tions.

(b) Procrustes transform the posterior draws of latent positions and, using the same trans-
formation matrix, transform the cluster means and covariances.

(c) Find the cluster membership probabilities of the actors that minimize the estimated Bayes
risk among all permutations of the cluster labels.

The general approach is due to Stephens (2000), and step (c) closely follows his solution to the
label switching problem. The technical details of the steps are given in Appendix A.

4. Choosing the number of clusters

We recast the problem of choosing the number of clusters as one of model selection. Each num-
ber of clusters corresponds to a different statistical model, and we develop a Bayesian approach
to comparing the resulting models.

One simple approach to model selection for the latent position cluster model is based on the
two-stage maximum likelihood estimation method of Section 3.1. We first compute the maxi-
mum likelihood estimates of the latent positions by using the latent space model of Hoff et al.
(2002). We then carry out model-based clustering of the resulting estimated latent positions,
computing the Bayes information criterion (BIC) for each different number of groups, and
choosing the number of groups with the highest values of the BIC, as described by Dasgupta
and Raftery (1998) and Fraley and Raftery (2002). As we shall see, however, this does not per-
form well, and instead we develop an approach that is based on the fully Bayesian estimation
method of Section 3.2.

The standard Bayesian approach to model selection is to compute the posterior model prob-
ability of each of the competing models (Kass and Raftery, 1995). If we want to select a single
model, we select the model with the highest posterior probability. The posterior model probabil-
ity is proportional to the integrated likelihood for the model times the prior model probability.
The integrated likelihood is obtained by integrating the likelihood times the prior over the
model’s parameter space. We assign equal prior probabilities to the models that we consider.

Here we use conditional posterior model probabilities, conditioning on an estimate of the
latent positions, but integrating over the other parameters. We find the integrated likelihood
of the observations and the estimated latent positions for each number of clusters. This was
proposed by Oh and Raftery (2001, 2003) and worked well in a setting that was similar to the
present one. There are several reasons for taking this approach. When selecting a model, we are
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typically selecting an estimated configuration for visualization and interpretation, so it makes
sense to evaluate the specific configuration of latent positions that will be used, rather than an
average over the distribution of latent positions. When comparing different numbers of clusters,
the dimension of the latent position parameter set that we condition on is the same regardless
of the number of clusters. Finally, the dimension of the set of latent positions is high, and this
can make it difficult to compute the integrated likelihood in a stable way.

For each value of the number of clusters, G, considered, we estimate the integrated likelihood
of .Y , Ẑ|G/, with Ẑ being a posterior estimate of the position of the actors. We choose the
value of G that gives the largest value of P.Y , Ẑ|G/. Letting θ= .μg,λg,σ2

g/
G
g=1, the integrated

likelihood is

P.Y , Ẑ|G/=
∫

P.Y , Ẑ|X,β, θ/ p.β/ p.θ/ dβ dθ

=
∫

P.Y |Ẑ, X,β/ P.Ẑ|θ/ p.β/ p.θ/ dβ dθ

=
∫

P.Y |Ẑ, X,β/ p.β/ dβ
∫

P.Ẑ|θ/ p.θ/ dθ,

where all terms are conditional on G.
The first integral on the right-hand side is the integrated likelihood for logistic regression of

the observed ties conditional on the latent positions and the observed attributes, and the second
integral is the integrated likelihood for the mixture model describing the latent positions. We
approximate both of these integrals by using the BIC approximation (Schwarz, 1978). The BIC
approximation for the integrated likelihood of a model for data D with nparam parameters θ and
nobs observations is

2 log{P.D/}≈2 log{P.D|θ̂/}−nparam log.nobs/: .10/

The BIC approximation for the logistic regression is

BIClr =2 log[P{Y |Ẑ, X, β̂.Ẑ/}]−dlogit log.nlogit/,

where β̂.Ẑ/ is the maximum likelihood estimator of β given that the latent positions are Z= Ẑ,
dlogit = dim.β/ is the number of parameters in the logistic regression model and nlogit is the
number of ties in the data. A possible alternative choice for nlogit is the number of possible ties,
n.n − 1/. We chose nlogit to be the number of actual rather than possible ties, on the basis of
arguments that are analogous to those of Volinsky and Raftery (2000).

The BIC approximation for the mixture model is

BICmbc =2 log[P{Ẑ|θ̂.Ẑ/}]−dmbc log.n/,

where dmbc is the number of parameters in the clustering model, and θ̂.Ẑ/ is the maximum
likelihood estimator of θ given that the latent positions are Z = Ẑ. Our final approximation is

BIC=BIClr +BICmbc:

For both BIClr and BICmbc, we use the minimum Kullback–Leibler estimates of the latent
positions in the maximization of the likelihoods.

5. Examples
5.1. Example 1: liking between monks
We consider the social relations between 18 monks in an isolated American monastery (Samp-
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Fig. 1. Relationships between monks within a monastery: groups from two-stage maximum likelihood esti-
mation of the latent position cluster model with three groups are shown by the colours of the nodes; a
grouping given by Sampson (1969) is shown by the letters T (Turks), L (Loyal Opposition), O (Outcasts) and
W (Waverers) (→, ties (i.e. the data))

son, 1969; White et al., 1976). While resident at the monastery, Sampson collected extensive
sociometric information by using interviews, experiments and observation. Here we focus on
the social relation of ‘liking’. We say that a monk has the social relation of ‘like’ to another monk
if he ranked that monk in the top three monks for positive affect in any of three interviews given
over a 12-month period.

We first consider the two-stage maximum likelihood estimation method, and the associated
model selection approach. The maximum likelihood latent space positions from the first stage
of the method are shown in Fig. 1. The BIC from the model-based clustering of the second stage
chose only one cluster. If we specify there to be three clusters, we obtain the estimated clusters
that are shown in Fig. 1.

The data that were collected by Sampson (1969) have received much attention in the social net-
works literature (White et al., 1976; Wasserman and Faust, 1994). Sampson provided a descrip-
tion of the clustering based on information that was collected at the end of the study period.
He identified three main groups: the Young Turks (seven members), the Loyal Opposition (five
members) and the Outcasts (three members). The other three monks wavered between the Loyal
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Table 1. Two-stage maximum likelihood and Bayesian estimates of the parameters of the latent position
cluster model for the relationship between monks within a monastery

Parameter Two-stage Lower Latent position Upper Posterior Posterior
maximum 2.5% cluster model 97.5% standard median
likelihood posterior deviation conditional

median on Ẑ

β0 3.475 1.028 1.820 2.830 0.458
β1 2.764 1.285 1.756 2.379 0.282
μ11 −1.188 −1.753 −1.376 −0.796 0.236 −1.081
μ12 0.242 −0.407 0.072 0.503 0.235 0.141
μ21 0.522 −0.170 0.305 0.814 0.250 0.420
μ22 −0.849 −1.237 −0.772 −0.051 0.301 −0.571
μ31 1.232 0.292 1.073 1.612 0.335 1.168
μ32 1.032 0.018 0.686 1.156 0.286 0.756
σ1 0.567 0.066 0.217 0.932 0.245 0.233
σ2 0.446 0.044 0.137 0.696 0.186 0.152
σ3 0.341 0.046 0.696 1.077 0.293 0.156
λ1 0.389 0.222 0.389 0.500 0.060 0.389
λ2 0.389 0.222 0.389 0.500 0.071 0.389
λ3 0.222 0.167 0.222 0.444 0.068 0.222

Opposition and the Young Turks, which he described as being in intense conflict (Sampson
(1969), page 370, and White et al. (1976), pages 752–753). The groups that were identified by
Sampson are indicated by letters in Fig. 1. The data that we model here include only one of the
relationships that Sampson considered in his analysis.

In our two-stage solution, the Young Turks form their own group, and the Loyal Opposition
and Outcasts are each contained in separate groups. The Waverers are split, with one clustered
with the Outcasts and the other two with the Loyal Opposition. White et al. (1976) developed
blockmodels for social relations within the monastery based on eight positive and negative
social relations. Although their methodology was different, their primary objective was cluster-
ing of the monks. Their model found three groups in the monastery; the groups coincide exactly
with those from our two-stage method when the number of groups is constrained to be 3 (White
et al. (1976), page 753). Our model yields the same results as theirs, even though they used much
more information.

We then fitted our Bayesian model using MCMC sampling with 5000 burn-in iterations that
were discarded, and a further 30000 iterations, of which we kept every 30th value. Visual dis-
play of trace plots and more formal assessments of convergence (e.g. Raftery and Lewis (1996))
indicated that this gave results that were sufficiently accurate for our purposes. The parameter
estimates from the two-stage and Bayesian methods are shown in Table 1.

The plot of the BIC values is given in Fig. 2 and indicates a clear choice of three clusters. This
is in line with the previous research.

Fig. 3 shows the minimum Kullback–Leibler estimates of the social positions of the monks for
the three-cluster model. The monks are well separated into the three clusters—even the monk
from the Loyal Opposition who had five ties to the other monks within his group and three ties
to the Young Turks is now well separated from the Young Turks. The Young Turks are also more
tightly clustered than the Loyal Opposition. Sampson’s analysis indicated larger heterogeneity
of actors within the Loyal Opposition group. This is reflected in the fissure between two com-
ponents of the Loyal Opposition. The Outcasts are also closely bound, and the Waverer who is
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Fig. 3. Estimates of clusters and latent positions for the relationship between monks within a monastery
from the Bayesian estimation of the latent position cluster model: the probability of assignment to each latent
cluster is shown by a pie chart

clustered with them is the farthest from the others. Overall the Bayesian estimate of the latent
position cluster model produces greater distinctions between the groups than the two-stage
estimate and firmly identifies the grouping of the Waverers.

The uncertainty in the cluster assignments is shown in Fig. 3, where the cluster assignment
probabilities for each actor are shown as pie charts. We see that most actors have almost no
probability of belonging to any other cluster—except for one of the Young Turks.
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Fig. 4. Two-stage maximum likelihood estimates of the latent positions and clusters for the adolescent
health data, where the number of clusters (2) is chosen by BIC: clusters are shown by colour with actual
grades shown as numbers

The two-stage method performs well here when the number of clusters is known in advance.
However, the Bayesian method correctly estimates the number of groups and also yields tighter
estimates of the latent positions. This is because it borrows strength from the clustering infor-
mation when estimating the latent positions. The Bayesian approach allows the uncertainty in
cluster assignment to take into account the uncertainty in actor position and vice versa, and
this turns out to be important for these data.

5.2. Example 2: adolescent health
The second social network is from the National Longitudinal Study of Adolescent Health. The
study is a school-based longitudinal study of the health-related behaviours of adolescents and
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Fig. 5. Clusters from two-stage maximum likelihood estimates of the latent position cluster model for the
adolescent health data, where the number of clusters is constrained to be 6: clusters are shown by colour
with actual grades shown as numbers; there are six green points, representing students from grade 9, two
of which are coincident

their outcomes in young adulthood. The study design sampled 80 high schools and 52 middle
schools from the USA that were representative with respect to region of the country, urbanicity,
school size, school type and ethnicity (Harris et al., 2003). In 1994–1995 an in-school question-
naire was administered to a nationally representative sample of students in grades 7–12. In
addition to demographic and contextual information, each respondent was asked to nominate
up to five boys and five girls within the school whom they regarded as their best friends. Thus
each student could nominate up to 10 students within the school (Udry, 2003).

Here we consider a single school of 71 adolescents from grades 7–12. We consider the friend-
ship nominations between those who have either nominated at least one other adolescent as
their friend or who have been nominated at least once as the friend of another adolescent. Two
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Table 2. Adolescent health data: clusters from two-stage
maximum likelihood estimation of the latent position cluster
model with six clusters, compared with the student’s grades

Grade Results for the following clusters:

1 2 3 4 5 6

7 13 1 0 0 0 0
8 0 11 1 0 0 0
9 0 0 7 6 3 0

10 0 0 0 0 3 7
11 0 0 0 0 3 10
12 0 0 0 0 0 4

adolescents who had no ties in the network were excluded. The remaining 69 adolescents form
a connected directed network with nodes the adolescents and nominations the ties.

We fitted the latent position cluster model without using the grades of the adolescents. Instead
we used the grade information for assessing the clustering. The two-stage maximum likelihood
estimates of the latent positions are given in Fig. 4. The approximate BIC values based on the
two-stage maximum likelihood estimates chose two clusters, which seems a poor choice given
the grade information. When we required six clusters, we obtained the results that are shown
in Fig. 5. Now the clusters have a loose correspondence to grade and most actors of the same
grade are close to each other.

The correspondence between clusters and grade is shown in Table 2. The seventh- and eighth-
grade adolescents belong to two clusters that are mostly homogeneous with respect to grade.
The ninth-grade adolescents fall into two clusters. The 10th-, 11th- and 12th-grade adolescents
fall into two clusters, one of which includes all four 12th graders.

We fitted our Bayesian model using MCMC sampling with 50000 burn-in iterations that were
discarded, and a further 2 million iterations, of which we kept every 1000th value. The result-
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Fig. 6. BIC-plot for the latent position cluster model of the adolescent health network
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Table 3. Two-stage maximum likelihood estimates and Bayesian estimates of the parameters of the latent
position cluster model for the adolescent health network

Parameter Latent position Lower Latent position Upper Posterior Posterior
mixture model 2.5% cluster model 97.5% standard median

estimate posterior deviation conditional
median on Ẑ

β0 1.031 1.001 1.394 1.812 0.208
β1 5.205 3.464 3.962 4.549 0.276
μ11 −1.495 −1.579 −1.168 −0.485 0.271 −1.126
μ12 −0.704 −1.493 −0.532 0.091 0.405 −0.610
μ21 −0.278 −1.130 −0.348 0.385 0.378 −0.241
μ22 −1.276 −1.574 −1.048 0.177 0.448 −1.163
μ31 0.051 −0.484 0.196 0.758 0.304 0.180
μ32 −0.165 −0.819 −0.179 0.526 0.315 −0.224
μ41 1.088 0.008 0.999 1.546 0.391 1.028
μ42 −0.384 −0.940 −0.276 0.594 0.385 −0.392
μ51 −0.497 −0.430 0.349 1.019 0.364 0.599
μ52 0.808 −0.456 1.243 1.683 0.317 1.118
μ61 0.837 −0.863 −0.057 1.052 0.490 −0.172
μ62 1.139 −0.310 0.830 1.476 0.464 0.880
σ1 0.368 0.169 0.368 0.895 0.216 0.231
σ2 0.402 0.192 0.495 1.012 0.267 0.257
σ3 0.166 0.123 0.291 1.035 0.325 0.107
σ4 0.204 0.178 0.456 1.022 0.294 0.207
σ5 0.450 0.262 0.538 0.985 0.448 0.257
σ6 0.514 0.152 0.479 1.064 0.323 0.233
λ1 0.188 0.058 0.159 0.348 0.070 0.188
λ2 0.174 0.043 0.159 0.348 0.075 0.159
λ3 0.116 0.029 0.116 0.333 0.072 0.130
λ4 0.087 0.043 0.130 0.319 0.070 0.145
λ5 0.130 0.058 0.217 0.406 0.094 0.188
λ6 0.304 0.029 0.145 0.348 0.085 0.188

ing BIC (Fig. 6) chose six clusters. This is the same as the number of grades, and the clusters
correspond roughly to the grades, so the BIC estimate has some face validity.

The parameter estimates for both the two-stage and the Bayesian estimates of the latent
position cluster model are shown in Table 3. Fig. 7 shows the Bayesian estimates of the chil-
dren’s social positions for the six-cluster model.

As we would expect the students to tend to be linked to others in their own grade, we can
compare the clusters that are identified by the model with the grades. As the model is unaware
of the grades of the students, we are asking the model to identify a latent clustering that should
be a partial surrogate for grade. The clusters correspond quite well to grades. This comparison
is summarized in Table 4.

The seventh-grade adolescents are in their own well-separated cluster, with the exception of
one seventh grader whose only friends are eighth graders (possibly a student who had been held
back). The eighth graders are mostly in their own cluster, with two having stronger ties to the
ninth-grade class and so being incorporated in that cluster. The ninth-grade class is split into
two clusters, the social magentas and the cliquey greens. The magenta ninth-grade cluster has
many ties to other clusters, whereas the ties from the green ninth-grade cluster to other clusters
are mostly to the other (magenta) ninth-grade cluster. The 11th grader whose only friend is a
green ninth grader is more likely to belong to the green cluster ninth grade than to any other.
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Fig. 7. Bayesian estimates of posterior clusters and latent positions for the friendship network in the ado-
lescent health school: latent clusters are shown by colour with actual grades shown as numbers

The 10th-, 11th- and 12th-grade classes belong to two clusters which are very close in the
latent social space. The 10th-grade class is entirely contained within the blue cluster, and most
of the 11th graders and all the 12th graders are in the black cluster.

Thus the model has identified the strong tendency of students to form ties with others in their
own grade, as the clusters line up well but not perfectly with the grades. There is also a more
subtle tendency for the within-grade cohesion to weaken as students move up in the school, from
the tightly linked seventh graders to the more loosely tied students in the top three grades, who
associate more easily with students in grades other than their own. This may reflect a tendency
of students to form links increasingly based on common interests and personal affinity and less
on the grade that they happen to be in, as they gain seniority.

Fig. 8 shows the cluster assignment probabilities for each student. Students in the magenta
cluster also have a significant probability of belonging to the cyan eighth grade cluster, whereas
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Table 4. Clusters from the latent position cluster model
compared with the student’s grades for the adolescent
health network†

Grade Results for the following clusters:

1 2 3 4 5 6

7 13 1 0 0 0 0
8 0 10 2 0 0 0
9 0 0 7 9 0 0

10 0 0 0 0 10 0
11 0 0 0 1 3 9
12 0 0 0 0 0 4

†Note the concordance between the clusters and the actual
grades.

the magenta ninth graders have significant probability of belonging only to the magenta and
green clusters. The uncertainty in cluster assignment between the blue and black clusters is
clearly visible.

The Bayesian method provides a much better estimate of the number of groups than the two-
stage maximum likelihood estimation approach. The clusters are well defined in terms of both
their positions in space and their correspondence to the grades. This is reflected in the estimates
of the positions and the uncertainty in cluster membership (Fig. 8).

6. Discussion

We have proposed a new model for social networks: the latent position cluster model. This
captures three important commonly observed features of networks, namely transitivity, hom-
ophily on attributes and clustering. We have developed two methods for estimating the latent
positions and the model parameters: a simple two-stage maximum likelihood procedure and a
fully Bayesian approach using MCMC sampling. We have also developed a Bayesian approach
to finding the number of clusters in the data. The methods work well for two data sets. The two-
stage maximum likelihood estimation approach works fairly well and is simple to implement,
whereas the fully Bayesian approach performs better but is more complex.

The model can be thought of as a restriction of the latent position model to represent coher-
ent groups of actors within the network better. It links the observed patterns of ties to latent
positions where the latter may be partially determined by unobserved attributes of the actors in
addition to social forces.

Our approach could be extended in several ways. We have developed it as a model for directed
ties, but it could easily be adapted to data involving undirected ties: instead of a likelihood
component for each ordered pair of actors .i, j/ and .j, i/, there would then be only one, for
the unordered pair .i, j/. We have specified our model as a model for binary ties: present or
absent. However, network ties often have non-binary values, such as counts (e.g. the number of
phone calls between two people), or continuous values (e.g. the volume of trade between two
countries). Our model can be easily extended to these situations by replacing the binary logistic
regression of equation (2) by a generalized linear model or another specification of dependence.

We have required the dimension of the latent social space to be specified by the user. It could
be desirable to estimate this from the data, and this is possible by using methods that are similar
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Fig. 8. Pie charts for posterior probabilities of cluster assignment for each actor, at the Bayesian estimates
of posterior latent positions for the friendship network in the adolescent health school: the students’ grades
are shown as numbers

to those in Section 4, as developed in a slightly different context by Oh and Raftery (2001).
The use of two dimensions leads to easy visualization, but higher dimensions may be needed to
represent the network adequately, especially for larger networks.

Two important local characteristics of networks are the tendency for a tie within a dyad to
be reciprocated, and for triads to be transitive. The latent position cluster model determines
these characteristics on the basis of the distances between the actors and their covariate values.
The propensity for reciprocity and transitivity in a data set may be higher or lower than that
prescribed by the model. For the applications that were considered in this paper the posterior
mean reciprocity and transitivity are consistent with the levels in the data. However, the model
may need to be extended to model reciprocity and transitivity in other networks explicitly.
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One important aspect of social networks that our model does not explicitly incorporate is
the differing tendency of actors to send and receive ties. The model could be extended to this
situation by including random effects for the propensity of actors to send and receive ties in
equation (2), similarly to van Duijn et al. (2004) and Hoff (2005). In our examples, the propen-
sities of the actors to receive ties (although not to send them) differed considerably, and our
model reflects this sufficiently well, but if the differences were much more extreme the model as
currently specified might have difficulties.

One use of social network models is to provide inputs to models of larger systems of which
the networks are part. An important example of this is epidemiological modelling of the spread
of contagious diseases (Kretzschmar and Morris, 1996; Bearman et al., 2004; Eames and Keel-
ing, 2004; Eubank et al., 2004). It is easy to simulate realizations from our model conditional
on estimated or specified parameters and, by using draws from the posterior distribution, one
can simulate a realistic range of scenarios. Often there is interest in simulating an entire pop-
ulation for which network data are available for only a small part. This could be done using
our model, if necessary by combining it with a simple model such as a Poisson process for the
means of clusters that were not represented in the data that were analysed. Although feasible,
our method is computationally demanding, and so for larger networks more computationally
efficient versions of our estimation methods should be sought.

The model has many potential application areas. The applications in this paper focus on
social relations where the ties represents positive affect. Network phenomena are ubiquitous in
the sciences (e.g. biology, information sciences and epidemiology). The model applies to diverse
types of relationships (e.g. biological interaction, exchange, co-citation, common affiliations or
food source) and nodes (e.g. proteins, villages, authors and organizations, or animals).

An R package called latentnet has been written to implement the procedures in this paper
(Handcock et al., 2004). The package is publicly available on the Comprehensive R Archive Net-
work, at http://cran.r-project.org.
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Appendix A: Identifiability of positions and cluster labels

Here we give some details of the steps in the algorithm to post-process the MCMC output for identifying
the positions of the actors, the cluster means and variances, and the cluster membership probabilities.

A.1. Actor positions via minimum Kullback–Leibler divergence
Let KL.Z,β; Z̃, β̃/ denote the Kullback–Leibler divergence of the distribution of Y at Z and β to the
distribution at Z̃ and β̃. Let η.Z, X,β/= [ηij.Z, X,β/], where ηij.Z, X,β/ is the log-odds of a tie given by
the right-hand side of equation (2). Equation (1) can be re-expressed as

P.Y |Z, X,β/= exp{ηT.Z, X,β/y}
c.Z, X,β/

where η.Z, X,β/ is vectorized in canonical order. The Kullback–Leibler divergence is
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KL.Z,β; Z̃, β̃/=∑
y

log
{

P.Y |Z, X,β/

P.Y |Z̃, X, β̃/

}
P.Y |Z, X,β/

= .η.Z, X,β/−η.Z̃, X, β̃//T EZ,X,β [Y ]− log

{
c.Z̃, X, β̃/

c.Z, X,β/

}
,

where the sum is over all possible values of y and

EZ,X,β [Y ]ij = exp{ηij.Z, X,β/}
1+ exp{ηij.Z, X,β/} :

We seek the values of Z̃ and β̃ that minimize the loss function KL.Z,β; Z̃, β̃/. As the true values Z̃ and β̃
are unknown we focus on values of Z̃ and β̃ that minimize the corresponding Bayes risk, i.e. the posterior
expected loss:

EZ,β|Yobs [KL.Z,β; Z̃, β̃/]=EZ,β|Yobs [η.Z, X,β/T EZ,X,β [Y ]]−η.Z̃, X, β̃/T E[Y |Yobs]
+EZ,β|Yobs [log{c.Z, X,β/}]− log{c.Z̃, X, β̃/},

where

E [Y |Yobs]=EZ,β|Yobs [EZ,X,β [Y ]]

is the posterior mean of Y . As the first and third terms do not involve Z̃ or β̃ this is equivalent to maximizing

exp{ηT.Z̃, X, β̃/ E [Y |Yobs]}
c.Z̃, X, β̃/

,

which can be done by using the likelihood maximization method that was previously described. In our
procedure the posterior mean E [Y |Yobs] is estimated from the MCMC sample, and so Z̃ and β̃ minimize
the corresponding estimate of the Bayes risk.

A.2. Label switching via minimum Kullback–Leibler divergence
The idea of minimizing a Kullback–Leibler divergence to solve the label switching problem was introduced
by Stephens (2000), and here we adapt his algorithm to our model.

Let P.θ/ = [pig.θ/], where pig.θ/ denotes the probability of classifying actor i into cluster g given by
equation (9). We write θ for the vector of parameter values {λg,μg,σ2

g}G
g=1. To express uncertainty in the

cluster memberships we use Q= [qig], where qig denotes the probability that actor i is assigned to cluster
g. For a given parameter vector θ, denote the Kullback–Leibler distance from the distribution P.θ/ to the
distribution Q by

KL.θ; Q/=∑
i,g

pig.θ/ log
{

pig.θ/

qig

}
:

Following Stephens (2000), we seek Q that minimizes the divergence over all permutations of the
cluster labels. Specifically, let π be a permutation of 1, . . . , g and π.θ/ = {λπ.1/, . . . ,λπ.g/,μπ.1/, . . . ,μπ.g/,
σ2
π.1/, . . . ,σ2

π.g/} be the corresponding permutation of θ. Then we seek Q to minimize the loss function:

min
π∈Υ

[KL{π.θ/; Q}]

where Υ is the set of all permutations of 1, . . . , g. As the true value of θ is unknown we focus on values
of Q that minimize the corresponding Bayes risk, i.e. the posterior expected loss. In our algorithm the
Bayes risk is approximated by the mean loss over the MCMC sample, and Q is chosen to minimize this
approximation. See Stephens (2000), algorithm 2, for the explicit computational steps.

References

Banfield, J. D. and Raftery, A. E. (1993) Model-based Gaussian and non-Gaussian clustering. Biometrics, 49,
803–821.

Bearman, P. S., Moody, J. and Stovel, K. (2004) Chains of affection: the structure of adolescent romantic and
sexual networks. Am. J. Sociol., 110, 44–91.



Clustering for Social Networks 321

Breiger, R. L., Boorman, S. A. and Arabie, P. (1975) An algorithm for clustering relational data with application
to social network analysis and comparison with multidimensional scaling. J. Math. Psychol., 12, 328–383.

Celeux, G., Hurn, M. and Robert, C. (2000) Computational and inferential difficulties with mixture posterior
distribution. J. Am. Statist. Ass., 95, 957–970.

Dasgupta, A. and Raftery, A. E. (1998) Detecting features in spatial point processes with clutter via model-based
clustering. J. Am. Statist. Ass., 93, 294–302.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM
algorithm (with discussion). J. R. Statist. Soc. B, 39, 1–38.

Diebolt, J. and Robert, C. P. (1994) Estimation of finite mixture distributions through Bayesian sampling. J. R.
Statist. Soc. B, 56, 363–375.

Doreian, P., Batagelj, V. and Ferligoj, A. (2005) Generalized Blockmodeling. Cambridge: Cambridge University
Press.

van Duijn, M. A. J., Snijders, T. A. B. and Zijlstra, B. H. (2004) p2: a random effects model with covariates for
directed graphs. Statist. Neerland., 58, 234–254.

Eames, K. T. D. and Keeling, M. J. (2004) Monogamous networks and the spread of sexually transmitted diseases.
Math. Biosci., 189, 115–130.

Eubank, S., Guclu, H., Kumar, V. S. A., Marathe, M. V., Srinivasan, A., Toroczkai, Z. and Wang, N. (2004)
Modelling disease outbreaks in realistic urban social networks. Nature, 429, 180–184.

Faust, K. (1988) Comparison of methods for positional analysis: structural and general equivalence. Socl Netwrks,
10, 313–341.

Fienberg, S. E. and Wasserman, S. S. (1981) Categorical data analysis of single sociometric relations. Sociol.
Methodol., 11, 156–192.

Fraley, C. and Raftery, A. E. (1998) How many clusters? Which clustering method? Answers via model-based
cluster analysis. Comput. J., 41, 578–588.

Fraley, C. and Raftery, A. E. (2002) Model-based clustering, discriminant analysis and density estimation. J. Am.
Statist. Ass., 97, 611–631.

Fraley, C. and Raftery, A. E. (2003) Enhanced model-based clustering, density estimation and discriminant
analysis software: MCLUST. J. Classificn, 20, 263–286.

Frank, O. and Strauss, D. (1986) Markov graphs. J. Am. Statist. Ass., 81, 832–842.
Freeman, L. C. (1996) Some antecedents of social network analysis. Connections, 19, 39–42.
Handcock, M. S., Tantrum, J., Shortreed, S. and Hoff, P. (2004) latentnet: an R package for latent posi-

tion and cluster modeling of statistical networks. (Available from http://www.csde.washington.edu/
statnet/latentnet.)

Harris, K. M., Florey, F., Tabor, J., Bearman, P. S., Jones, J. and Udry, R. J. (2003) The national longitudi-
nal of adolescent health: research design. Technical Report. Carolina Population Center, University of North
Carolina, Chapel Hill. (Available from http://www.cpc.unc.edu/projects/addhealth/design.)

Hoff, P. D. (2005) Bilinear mixed-effects models for dyadic data. J. Am. Statist. Ass., 100, 286–295.
Hoff, P. D., Raftery, A. E. and Handcock, M. S. (2002) Latent space approaches to social network analysis.

J. Am. Statist. Ass., 97, 1090–1098.
Hoff, P. D. and Ward, M. D. (2004) Modeling dependencies in international relations networks. Polit. Anal., 12,

160–175.
Holland, P. W. and Leinhardt, S. (1981) An exponential family of probability distributions for directed graphs

(with discussion). J. Am. Statist. Ass., 76, 33–65.
Kass, R. and Raftery, A. E. (1995) Bayes factors. J. Am. Statist. Ass., 90, 773–795.
Kretzschmar, M. and Morris, M. (1996) Measures of concurrency in networks and the spread of infectious disease.

Math. Biosci., 133, 165–195.
Lazarsfeld, P. and Merton, R. (1954) Friendship as social process: a substantive and methodological analysis.

In Freedom and Control in Modern Society (eds M. Berger, T. Abel and C. Page), pp. 18–66. New York: Van
Nostrand.

Liotta, G. (ed.) (2004) Graph drawing. Lect. Notes Comput. Sci., 2912.
Lorrain, F. and White, H. (1971) Structural equivalence of individuals in social networks blockstructures with

covariates. J. Math. Sociol., 1, 49–80.
McFarland, D. D. and Brown, D. J. (1973) Social distance as a metric: a systematic introduction to smallest

space analysis. In Bonds of Pluralism: the Form and Substance of Urban Social Networks (ed. E. O. Laumann),
pp. 213–253. New York: Wiley.

McPherson, M., Smith-Lovin, L. and Cook, J. M. (2001) Birds of a feather: homophily in social networks.
A. Rev. Sociol., 27, 415–444.

Newman, M. E. J. (2003) The structure and function of complex networks. SIAM Rev., 45, 167–256.
Nowicki, K. and Snijders, T. A. B. (2001) Estimation and prediction for stochastic blockstructures. J. Am. Statist.

Ass., 96, 1077–1087.
Oh, M. S. and Raftery, A. E. (2001) Bayesian multidimensional scaling and choice of dimension. J. Am. Statist.

Ass., 96, 1031–1044.
Oh, M. S. and Raftery, A. E. (2003) Model-based clustering with dissimilarities: a Bayesian approach. Technical

Report 441. Department of Statistics, University of Washington, Seattle.



322 Discussion on the Paper by Handcock, Raftery and Tantrum

Raftery, A. E. and Lewis, S. M. (1996) Implementing MCMC. In Markov Chain Monte Carlo in Practice (eds
W. R. Gilks, D. J. Spiegelhalter and S. Richardson), pp. 115–130. London: Chapman and Hall.

Sampson, S. F. (1969) Crisis in a cloister. PhD Thesis. Cornell University, Ithaca.
Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461–464.
Schweinberger, M. and Snijders, T. A. B. (2003) Settings in social networks: a measurement model. Sociol. Meth-

odol., 33, 307–341.
Sibson, R. (1979) Studies in the robustness of multidimensional scaling: perturbational analysis of classical scal-

ing. J. R. Statist. Soc. B, 41, 217–229.
Snijders, T. (1991) Enumeration and simulation methods for 0-1 matrices with given marginals. Psychometrika,

56, 397–417.
Snijders, T. A. B. and Nowicki, K. (1997) Estimation and prediction for stochastic block-structures for graphs

with latent block structure. J. Classificn, 14, 75–100.
Snijders, T. A. B., Pattison, P. E., Robins, G. L. and Handcock, M. S. (2006) New specifications for exponential

random graph models. Sociol. Methodol., 36, 99–153.
Stephens, M. (2000) Dealing with label switching in mixture models. J. R. Statist. Soc. B, 62, 795–809.
Tallberg, C. (2005) A Bayesian approach to modeling stochastic blockstructures with covariates. J. Math. Sociol.,

29, 1–23.
Udry, R. J. (2003) The national longitudinal of adolescent health: (add health), waves i and ii, 1994-1996; wave

iii, 2001-2002. Technical Report. Carolina Population Center, University of North Carolina, Chapel Hill.
Volinsky, C. T. and Raftery, A. E. (2000) Bayesian information criterion for censored survival models. Biometrics,

56, 256–262.
Wasserman, S. S. and Anderson, C. J. (1987) Stochastic a posteriori blockmodels: construction and assessment.

Socl Netwrks, 9, 1–36.
Wasserman, S. S. and Faust, K. (1994) Social Network Analysis: Methods and Applications. Cambridge: Cambridge

University Press.
White, H. C., Boorman, S. A. and Breiger, R. L. (1976) Social-structure from multiple networks: I, Blockmodels

of roles and positions. Am. J. Sociol., 81, 730–780.

Discussion on the paper by Handcock, Raftery and Tantrum

Tom A. B. Snijders (University of Oxford and University of Groningen)
The paper by Handcock, Raftery and Tantrum is an interesting new step in modelling social networks—
more specifically, digraphs (directed graphs). This is a basic data structure for representing relational data,
which is found to be increasingly important in all the social sciences.

To make a plausible stochastic model for one observation of a digraph, the crucial issue is to represent
the stochastic dependence between the tie variables Yi,j . Important types of dependence are dyadic depen-
dence between reciprocal tie variables Yi,j and Yj, i, and triadic dependence between tie variables involving
three nodes, such as the pair (Yi,j , Yi,k), or the triple (Yi,j , Yj, k, Yi,k), which is used to represent tendencies
towards transitivity.

Two general ways for representing dependence between tie variables have been presented in the litera-
ture. One is by postulating latent nodal variables and conditional independence of the observations, given
the latent variables, in the classical Lazarsfeld tradition of latent structure models. This way is followed
in the present paper. A discrete latent class approach was proposed in Nowicki and Snijders (2001). The
second way is by directly modelling this dependence, as is done in exponential random-graph models.
The landmark paper here is Frank and Strauss (1986); this type of modelling has become practically fea-
sible especially since the model extensions that were recently presented in Snijders et al. (2006). Further
research is needed to compare these ways of representing dependence in stochastic digraphs theoretically
and empirically; one very practical advantage of the latent structure models is that they allow us to handle
randomly missing data in almost trivial ways—which is quite unusual for techniques of social network
analysis.

When using a latent distance model, a major question is the type of metric to employ. The current paper
proposes a Euclidean metric with a superimposed clustering. An alternative is an ultrametric (Schwein-
berger and Snijders, 2003) which is equivalent to a system of nested groups, or clusters, without further
structure. When employing the Euclidean metric the modeller must choose the number of dimensions; for
the ultrametric model the number of nesting levels. The Euclidean metric is richer and its spatial arrange-
ment has effects on the probability of ties both within and between clusters. Filling in this richer detail also
requires more from the data. Which metric is more appropriate is an empirical matter and also depends
on the substantive background knowledge and the substantive questions being asked. From the empirical
side, a more detailed assessment of fit would be interesting than only the Bayes information criterion
approximations that are proposed in the paper as a global measure of fit. It seems a good idea to follow the
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paper and to assess fit conditional on estimated positions (although this is not appropriate for comparing
the fit with other types of model). Detailed fit assessments could be based on the contributions of dyads
to the log-likelihood,

li,j.Z/= log{P.Yi,j =yi,j|Z, X,β/}+ log{P.Yj, i =yj, i|Z, X,β/}
(ignoring in the notation for l the dependence on X and β). The fit of node i can be assessed on the basis
of the sum Σn

j=1 li,j.Z/. Comparing this across nodes will indicate which nodes conform relatively poorly
to the Euclidean model. Similarly when Cg for g = 1, . . . ,G are the sets of nodes defining the G clusters
after post-processing the data, the quality of the representation of the within-cluster and between-cluster
ties can be measured by using ∑

i,j∈Cg ;i<j

li,j.Z/

and ∑
i∈Cg , j∈Ch

li,j.Z/

respectively (where g �=h).
The sampling properties of such fit statistics will be quite complicated and a parametric bootstrap

may be too time consuming to approximate them. However, given that we are discussing a fit assessment
conditionally on the estimated latent positions, a natural first-order standardization is to treat the Yi,j
as independent binary variables for the given X , Z and β, and to standardize by using the accordingly
calculated means and variances.

Next to a detailed fit analysis, a detailed sensitivity analysis will be interesting, to assess how well the
data determine the Euclidean positions. Denote by Z[i ++u] the array Z in which the position of node
i has been translated by adding to it the vector u. Then Σj li,j.Z[i ++u]/ indicates the sensitivity of the
conditional log-likelihood to translation of node i by the vector u. This will have a local maximum in u = 0
and preferably is approximately concave as a function of u. If there are regions in space that are away from
u = 0 with local maxima which are not much lower than the value in u = 0, then node i has an ambiguous
position. Similarly, the change in log-likelihood can be calculated that results from translating all nodes in
a whole cluster Cg by the same vector u, or by orthogonally rotating all points in a cluster. This will yield
possibilities for diagnosing how well the between-cluster patterns of ties determine the relative positions
of the clusters.

The clustered spatial representation that is proposed in this paper represents what sociologists call the
cohesive structure of the network. However, digraphs can have many structural features, and the cohesive
structure is only one. While remaining in the framework of continuous latent variable models, it is straight-
forward also to represent the structural properties of hierarchy and of prominence. Hierarchy means that
there is an order between the actors, and ties have a preferential direction. This can be important, e.g. when
the relationship that is under study is an advice relationship, where the hierarchy could reflect expertise.
Status differences also can give rise to hierarchically structured networks. Denoting now by z1i instead
of zi the (multidimensional) locations representing propinquity, hierarchy can be represented by using an
additional vector of one-dimensional latent variables z2i, and adding

β2.z2i − z2j/

to the log-odds of the tie from i to j. This can be complemented by a third vector of latent variables, again
one dimensional, contributing

β3.z3i + z3j/

to the log-odds of a tie; this represents prominence, defined as the propensity to have ties. For .Z2i, Z3i/,
we could postulate mixtures of (correlated!) bivariate normal distributions. This is nothing other than a
reparameterization of the random activity and popularity effects of van Duijn et al. (2004). The param-
eterization that is proposed here has the advantage that it directly expresses the hierarchical aspect of
the network structure, which is substantively interesting in many applications. When employing latent
Euclidean distance models to represent directed social networks, it seems to me that the default should
also be to include hierarchy and prominence (or activity and popularity) dimensions in the latent
variables.



324 Discussion on the Paper by Handcock, Raftery and Tantrum

Also after such an extension, the latent space models and the exponential random-graph models cur-
rently are the main ‘competitors’ for statistically modelling non-longitudinal observations of social net-
works. Further practical experience with these models is necessary to assess their worth; this will need to
involve more detailed studies of fit and sensitivity than we have seen so far. I expect that, especially for
modelling larger networks (with, say, a few hundred or more nodes), the latent space models will not be
able to represent network structures as expressed by subgraph counts sufficiently well and the exponential
random-graph models will not be able to represent the cohesive structure sufficiently well. Models that
combine important features of these two approaches may be the next generation of social network models.

I am very pleased to propose the vote of thanks for this very interesting paper.

Tony Robinson (University of Bath)
A compelling advantage when using mixture model-based clustering in a Bayesian framework is the ability
to obtain posterior probability information on all quantities of interest. This paper neatly incorporates the
technology in a novel approach for social network discovery. However, the benefits of mixture modelling
come with a cost, especially in a clustering application for, by definition, objects are ‘mixed up’ and the
results of analyses must be examined carefully to glean the important information about likely forms of
object partitioning. This is certainly so when clustering on observables and now, challengingly, we see the
authors applying the technique to positions of actors in a social space which is latent. Partitioning these
actors is clearly a major objective in the current exercise. Most clustering methods partition reasonably well
when the degree of separation between groups is marked and correspondingly less well as the degree of over-
lap increases and model-based clustering is no exception. In using model-based clustering we often find that
the results for marginal quantities often conflict or obscure. For example there may be a tension between
the likely number of components and the sampled frequency of likely partitions. A careful examination of
the marginal, joint and conditional behaviour of the results is necessary for sensible inferences to be drawn.

Moreover the results of model-based clustering can be sensitive to structural assumptions which directly
affect sampled partitioning. One such structural assumption here is that of spherical Gaussian compo-
nents. The authors give some justification for such a choice based on invariance of the likelihood under the
co-ordinate system and sphericity will certainly conveniently cut down on the number of parameters. But I
do not find this wholly convincing and wonder whether the authors are truly averse to alternatives such as
Gaussian components with a more flexible covariance structure or even non-Gaussian components. Are
there underlying substantive considerations concerned with the nature of the social space and the cluster-
ing behaviour of actors within it or is social space so flexible as to render the distributional model choice
essentially immaterial? I doubt that the latter is always so and question whether such a restrictive model
can sometimes lead to too many clusters or overdispersed estimates which would affect the partitioning.

The authors take a fairly traditional approach to deciding on the number of clusters apart from condi-
tioning on actor positions. There are other approaches such as transdimensional samplers but they require
even more sophistication in implementation. If determination of the number of clusters is made conditional
on a posterior estimate of actor positions, care must be taken to ensure that these are determined fairly
and are not influenced by an overly restrictive model specification and by design of a sampler that allows
a free mixing of actor positions across the latent space to avoid imposing artificial clustering. Deciding on
the number of clusters needs to take account of all aspects of the model.

This determination of configurations of actors in the social space has clear parallels with multidimen-
sional scaling in that both techniques aim to produce an interpretable configuration in a space of specified
dimension from which structure can be identified. The default choice for the dimension of the latent space
seems to be 2 as it is in most applications of multidimensional scaling undoubtedly driven by ease of
visualization in both cases. It would be standard good practice in multidimensional scaling to explore
solutions in other nearby dimensions and I would have liked to see the same in the two examples of latent
space clustering. The authors do reference Oh and Raftery (2001) as a possible way to choose but otherwise
leave the choice of dimension to be specified by the user who will no doubt also choose 2 as a starting-
and possibly a finishing point. For example in the adolescent health example, would the choice of three
or more dimensions lead to separation of the higher grades? Similarly would a choice of one dimension
yield essentially the same results as two dimensions, as inspection of Fig. 8 seems to indicate groups with
roughly increasing grades with anticlockwise movement around the configuration and the higher grades
curling back towards the lower.

I also have a worry about the basic underlying model as specified in equation (2). If we accept that
there may be underlying clusters, why should the covariates not act differently among them? The global
behaviour in equation (2) clearly does not allow this possibility.
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I believe that the authors have made a decent start at designing a potentially useful technique for cluster-
ing in static social networks but that users need to be aware that the technique is far from problem free and
that they must be careful not to overcook the recipe and thereby to overinterpret results. It is my pleasure
to second the vote of thanks.

The vote of thanks was passed by acclamation.

Anthony C. Atkinson (London School of Economics and Political Science) and Marco Riani (Università di
Parma)
Over the years we have enjoyed both Adrian Raftery’s talks and his flow of publications on model-based
clustering. We would like to compare some results of the use of mclust with a cluster analysis that is
produced by the use of the forward search.

(a)

(b)

Fig. 9. Old Faithful Geyser data: (a) forward plot of minimum Mahalanobis distances from 300 random starts
with 1%, 50% and 99% envelopes (two clusters are evident); (b) Bayes information criterion plot from mclust,
indicating three clusters
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The forward search for multivariate data is described in Atkinson et al. (2004). In general the search
proceeds by successively fitting subsets of the data of increasing size. For a single multivariate popula-
tion any outliers will enter at the end of the search with large Mahalanobis distances. If the data are
clustered and the search starts in one of the, unfortunately unknown, clusters, the end of the cluster is
indicated when the next observation to be added is remote from that cluster. To find clusters we have
recently (Atkinson et al., 2006a,b; Cerioli et al., 2006) suggested running many searches from randomly
selected starting-points. Some of these start in, or are attracted to, a single cluster; a forward plot of the
minimum Mahalanobis distance of the observations that are not in the fitted subset then reveals the cluster
structure.
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Fig. 10. Old Faithful Geyser data: scatterplot matrices of (a) the two clusters from the forward search (units
marked � could lie in either cluster) and (b) the three clusters that were found by mclust
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As an example we analyse 272 observations on the eruptions of the Old Faithful Geyser taken from the
Modern Applied Statistics in S library (Venables and Ripley, 2002). Azzalini and Bowman (1990) described
the scientific problem. Fig. 9(a), a forward plot of Mahalanobis distances from the forward search, clearly
shows the two groups. Fig. 9(b) is the Bayes information criterion output of mclust from S-PLUS which,
on the contrary, indicates three clusters. Fig. 2 of Fraley and Raftery (2006) for a slightly different set of
geyser data is similar and again indicates three clusters.

We use further forward searches to establish membership of these two clusters and establish the un-
clustered units. A scatterplot of the resulting two clusters is shown in Fig. 10(a). The three clusters that
are found by mclust are in Fig. 10(b). Fuller details of our analysis including further comparisons and
considerations of robustness are in Atkinson and Riani (2007).

We do not want to imply that the imposing edifice, some of whose rooms we have so enjoyably visited
today, is built on sand. But it does seem that there are still some fundamental problems in the foundations
of clustering that need to be resolved.

Isobel Claire Gormley (University College Dublin) and Thomas Brendan Murphy (Trinity College Dublin)
We congratulate the authors on a thought-provoking paper. We feel that the combination of model-based
clustering with latent space modelling is applicable far beyond the proposed application of the analysis of
social network data.

We have recently been developing statistical models for rank data including data from Irish elections
(Gormley and Murphy, 2005, 2006a) and Irish college applications (Gormley and Murphy, 2006b). Two
approaches that we have taken are using mixture models (Murphy and Martin, 2003; Gormley and Murphy,
2005, 2006b) and using a latent space model (Gormley and Murphy, 2006a). The paper that is presented
here provides a combination of both of these modelling approaches which we look forward to applying to
the analysis of rank data.

In our work, we found that model choice is a difficult aspect of the modelling process. The number of
components in a mixture model can be estimated consistently by using the Bayes information criterion
(Keribin, 2000) but we found that the choice of dimensionality in our latent space model is more problem-
atic. We were wondering whether the authors could provide us with insight into the methods for choosing
the dimensionality of the latent space in their social network model.

More recently, we have considered methods for including covariates in our models. One approach that
we have considered is allowing the mixture probabilities to depend on covariates (Gormley, 2006); this
yields a special case of the mixture-of-experts model (Jacobs et al., 1991). This model can be fitted very
easily with minor changes to the mixture modelling framework. In the context of this paper this may
provide an alternative method for achieving homophily by attributes.

Trevor Sweeting (University College London)
I would be interested to hear from the authors whether they have considered using an infinite group cluster
model and, if so, what they would consider to be the relative advantages and disadvantages of such a for-
mulation over their finite group cluster model in the context of network models. There are various possible
Bayesian formulations of infinite group cluster models. A common choice of prior distribution for the
group weights λ arises from a Dirichlet process prior structure for the parameters of the latent positions,
since this structure automatically induces clustering. Specifically, writing φi = .mi, s2

i / the Dirichlet process
mixture (DPM) structure for the latent positions would be specified as

zi|φi ∼MVNd.mi, s2
i Id/,

φi|F IID∼ F ,

F ∼DP.F0, γ/,

F0 =MVNd.0,ω2Id/×σ2
0 Invχ2

α:

Here DP(·, ·) denotes a .d + 1/-dimensional Dirichlet process and F0 and γ are the associated mean and
precision parameters. Now, for g = 1, 2, . . . , write θg = .μg,σ2

g/ and θ= .θ1, θ2, . . ./. Using Sethuraman’s
(1994) stick breaking representation of the Dirichlet process, the above specification is equivalent to the
following infinite group version of the authors’ model:

zi|θ IID∼
∞∑
g=1

λg MVNd.μg,σ2
gId/,
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θg
IID∼ F0,

λg =ug
g−1∏
j=1

.1−uj/,

uj
IID∼ beta.1, γ/:

For additional flexibility a prior distribution is often assigned to the precision parameter γ, chosen to
reflect the prior expectation and uncertainty about the number of clusters that are contained in the data.
It would be of interest to explore whether Markov chain Monte Carlo (MCMC) schemes in the literature
in the case where the zi are not latent (see, for example, Neal (2000)) could be readily integrated with the
MCMC scheme that is given in Section 3.2 of the paper.

The DPM model is just one possible model for Bayesian clustering. The generalization of the DPM
model to product partition models, for example, is described in Quintana and Iglesias (2003). Potential
advantages of an infinite group over a finite group cluster model would be that, firstly, neither the
Bayes information criterion nor reversible jump MCMC methods would be necessary for estimation of
the number of clusters, G, contained in the data; secondly, uncertainty about G could be readily assessed;
thirdly, an infinite group model would deal more cleanly with the situation that is discussed in Section 6
where network data are available for only part of a population so that other clusters may not yet have been
represented.

David S. Leslie (University of Bristol)
I congratulate the authors for their interesting paper. However, it seems that the Markov chain Monte
Carlo sampling scheme that was used results in extremely slow mixing, requiring 2 million iterations with
only every 1000th iteration being used. One aspect of this slow mixing relates to a problem that was
encountered by Leslie et al. (2006).

The problem arises when we move from a simple latent structure to a mixture model latent structure.
In Leslie et al. (2006) the transition was from simple probit regression with a normal latent structure to a
binary choice regression model with latent variables drawn from a Dirichlet process mixture model. In the
current paper the transition is from the simple normal model for the latent variables that was used by Hoff
et al. (2002) to a situation in which the latent variables are drawn from a mixture of multivariate normal
distributions. The natural sampling scheme to use when such an extension is made is that presented in the
paper, where the component labels K are sampled conditionally on the latent variables Z; then the latent
variables are sampled conditionally on the component labels K. However, a simple example suffices to see
that this is likely to result in extremely poor mixing.

Consider the two-dimensional latent variables that are shown in Fig. 11, and consider first the process
of updating the latent variable of the point that is marked; we shall call it point i. The latent variable zi is
drawn conditionally on membership of cluster 1 and so is highly likely to be close to the other members
of cluster 1, and hence far from the members of cluster 2. Now consider updating the cluster label Ki

conditionally on the latent variable value zi: it is highly unlikely that i will be allocated to cluster 2 owing
to the location of the latent variable zi. As seen by this example, it is very difficult for the latent variables
to move between clusters, owing to the high correlation between cluster labels Ki and latent values zi.

The solution that was proposed by Leslie et al. (2006) is, for each i, to update Ki and zi simultaneously.
They could integrate out a single zi, allowing Gibbs sampling of cluster membership without conditioning
on the latent variable, followed by Gibbs sampling of the latent variable conditionally on the sampled
cluster membership. In the situation that is presented here it seems to be impossible to perform this trick,
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but nevertheless we can propose KÅ
i at random, and then propose a value of zÅ

i conditional on KÅ
i , before

deciding whether or not to accept both KÅ
i and zÅ

i by using a Metropolis–Hastings ratio.

N. T. Longford (SNTL, Leicester, and Universitat Pompeu Fabra, Barcelona)
Mixtures of multivariate normal distributions, which are used by the authors with great skill, are a greatly
underrated device for generating a wide variety of distributions. In more than two dimensions, the normal
is the only comprehensive class of distributions that is easy to handle in the standard likelihood-related
calculations. By fitting a multivariate normal mixture we approximate the target distribution. We are fit-
ting not only the modes of the distribution but also its shoulders and tails. Therefore mixture components
cannot be automatically associated with clusters. All clusters are ‘condemned to be normal’. For exam-
ple, none of the clusters in the authors’ examples could be associated with a skewed latent distribution.
Admittedly, the layer of latentness grants some flexibility in this respect, but a mixture component can
be declared a cluster only when its variances are small relative to the distance of its expectation from
the expectations of the other components. In a different context, Longford and Pittau (2006) present an
analysis in which multivariate mixtures cannot be regarded as clusters because the mixture components
differ principally by their patterns of variation and dependence.

The term ‘determination’ (of the number of components) sits very uncomfortably in the Bayesian ter-
minology, because it implies elimination of any uncertainty. Instead of concluding that there are three
components in the first example, I would prefer a brief discussion of the solutions for two and four com-
ponents, accompanied by a comment on how much less likely they are and how their solutions are related
to the preferred three-component solution.

I understand that inferences in both examples are made for the subjects in the respective studies, not for
the underlying population. In a frequentist view, there is a puzzling ambiguity. What distribution would
govern the responses of the 18 monks in a replication of the study: the posited model? A more realistic
alternative is that some (strong) links would be declared in every replication, whereas some other (weaker)
links may be declared with a range of probabilities. If all the links are strong there is no variation in the
replicate response patterns and, presumably, there is no uncertainty in the inference. Would the process
of forming links be also replicated? I would be concerned if these issues were regarded in the Bayesian
paradigm as not relevant, even though I appreciate that some would be difficult to incorporate in the
analysis.

John T. Kent (University of Leeds)
The motivation for the statistical models in this paper is mainly focused on the networking and social
sciences perspective. However, it is also helpful to draw out the analogies to more conventional statistical
methodology. For example, in regression analysis, we can

(a) start with a geometric relationship y =a+bx,
(b) include normal errors to obtain the usual linear model,
(c) extend this framework to a generalized linear model, with for example Bernoulli observations,
(d) include random effects to allow for grouping and
(e) view clustering as an unlabelled random-effects model.

Similarly, for data on the relationships between n individuals or sites, we can

(a) start with the mathematical result that knowing all the Euclidean distances between the n sites deter-
mines the configuration of sites (up to translation and orientation),

(b) introduce stochastic errors to obtain the classic multidimensional scaling estimation problem,
(c) extend this framework to a generalized linear model for the presence or absence of edges and
(d) introduce random effects and
(e) introduce clustering as before.

Since an underlying latent configuration is determined only up to translation and orientation (and often
size), it enters the statistical model only through its shape. For example in equation (7), when updating μg,
it is only the shape (or shape plus size) of the configuration which is identifiable, not the whole configura-
tion, and the updating exercise should take this restriction into account. I suspect that the incorporation of
shape ideas into the analysis would have only a minor practical effect, but it would be the ‘right’ approach
in terms of identifiability.

A recent development in shape analysis is the investigation of unlabelled shapes, where we may want
to match two configurations together, but not know which sites correspond. One application is to protein
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structure analysis, where the positions of atoms on each protein can be determined by X-ray crystallogra-
phy and where it is suspected that (subregions of) proteins of similar shape have similar biological function,
but where the labellings are unknown. There are some similarities to the problem of comparing clusterings
determined by the {μg} in different Markov chain Monte Carlo simulations.

Tony Lawrance (University of Warwick, Coventry)
It is a pleasure to contribute to the discussion after the experts have spoken. My experience of this area and
paper is the 2-hour train journey from Warwick to London, a distance of nearly zero according to the met-
ric which this paper induced. My first point is to enquire how the analysis can address the measurement of
friendliness or interactions of the actors that are involved, rather than their groupings. Secondly, I noticed
that the modelling is predicated on a conditional independence assumption, which it must be tough to
validate and is probably a matter of faith. I could not immediately see any attention in the paper given to
assessing the fit of the model, and the choice of prior forms seemed clever, but I wonder how much can
they influence the final groupings? Wider empirical validation, replacing monks and monasteries by lec-
turers and departments, would satisfy me more generally. My final observation concerns the microscopic
pie charts, noting that they take the development of invisible graphics to a new level, at least judging
by my monochrome preprint. Overall, I thought that this paper was a nice blend of methodology and
application.

The following contributions were received in writing after the meeting.

Edoardo M. Airoldi (Carnegie Mellon University, Pittsburgh)
The authors’ work with the latent space clustering methodology provides an impressive demonstration
of the use of hierarchical models for identifying groups of nodes from observed connectivity patterns.
Modelling choices based on sociological principles, i.e. transitivity and homophily, increase its appeal as
an exploratory tool for the analysis of social networks. The methodology proposed goes only part way,
however, towards addressing fundamental issues that arise in the statistical analysis of social networks.

The stochastic blockmodel of mixed membership in Airoldi (2006) and Airoldi et al. (2007a) offers an
alternative approach with different insights on latent aspects underlying network structure. Models in this
family also posit the existence of an unknown number of clusters; however, they replace latent positions
with mixed memberships π1:N , which map nodes to (one or more) clusters, and add a latent blockmodel
B that specifies cluster-to-cluster hierarchical relations. These parameters are directly interpretable in terms
of notions and concepts that are relevant to social scientists, and better suited to assist them in extracting
substantive knowledge from noisy data, ultimately to inform or support the development of new hypotheses
and theories. Therefore, inference about π1:N and B is crucial for the analysis of data.

Applying this to Sampson’s data demonstrates both linkages and differences. Our version of the Bayes
information criterion also suggests the existence of three factions among the 18 monks, but our groupings
are different. In Fig. 12, Romul and Victor (two of Sampson’s Waverers) stand out; and so do Greg and John
who were expelled first from the monastery. The mixed membership map is specified by using node-specific
latent vectors π1:18, independent and identically distributed samples from a three-dimensional symmetric
Dirichlet(α) distribution. The map of hierarchical relationships among factions is specified by a 3 × 3
matrix of Bernoulli hyperparameters B, where B.i, j/ is the probability that monks in the ith faction relate
to those in the jth faction. Other features that are relevant to data analysis are the marginal probability of a
relation .π′

nBπm/ and the relation between the number of clusters and dimensionality of the latent simplex.
Our models allow a focus on issues such as membership of monks in factions, and this could lead to the

formation of a social theory of failure in isolated communities, which is capable of testing with longitudinal
data. In Airoldi et al. (2007), we provide full details on specification, estimation and interpretation for
both the Sampson and the adolescent friendship network examples.

Julian Besag (University of Washington, Seattle)
I would like to comment on the authors’ choice of examples. After all, social networks have been around
for a long time and there is an abundance of data, so we should be expecting more than purely illustrative
analyses by now.

In their first example, the authors deem an edge from i to j to exist if i cites j at any of his three inter-
views. In general, if clusters change over time, such a rule could lead to spurious results. Moreover, as
regards social science, I would assume that the temporal development of clusters, including their creation,
coalescence, fragmentation and destruction, is of more interest than their static properties. Although three
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Fig. 12. In the reference simplex, circles and triangles correspond to mixed membership vectors of indi-
vidual monks, π1:18 (circles were obtained with B D Id3 and αD 0:01, whereas triangles were obtained with
B D Id3 and αD0:58—estimated via an empirical Bayes method): an arbitrary one-to-one projection situates
the Gaussian mixture of Table 1 in the simplex

time points are probably too few for meaningful analysis, more extensive space–time networks could have
been chosen. Such analysis is particularly important for communicable diseases. Note that, in setting up
space–time models, multiple changes in edge configurations can occur (almost) instantaneously, though
this is sometimes overlooked.

As regards their second example, do the authors have a justification for focusing on one particular
school out of 132? It seems to me that they should at least have analysed a small sample of schools. And
why were no covariates included, particularly the grade of student? To claim success in extracting grade as
an important clustering attribute suggests to me that the authors are too easily satisfied. Their secondary
conclusions are plausible and could have been checked in other schools. The general point here is the effect
of including cluster attributes as covariates, which is allowed in their original formulation but apparently
not in their examples. How does this affect cluster identification?

Lastly, do the authors have anything to add about the relevance of their approach to the huge net-
works that for example AT&T and Microsoft researchers must deal with and for which quite different
methods are used? Is this merely a computational issue or is it that exploratory techniques are more
appropriate?
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David Blei (Princeton University) and Stephen E. Fienberg (Carnegie Mellon University, Pittsburgh)
We congratulate Handcock, Raftery and Tantrum for this interesting and elegant paper that proposes
combining the latent space and stochastic blockmodels of sociometric data. We found it especially instruc-
tive since it parallels our efforts to develop a similar analysis (Airoldi et al., 2007a, b). We shall compare
the two approaches.

The authors’ construction integrates the latent space model for relational data with a ‘traditional’ clus-
ter model based on a finite mixture of Gaussian distributions. Their methodology mixes the Bayesian
approach to cluster estimation with a likelihood variant of the latent space model. This is valuable for
exploratory analyses of sociomatrices.

Our approach begins with a random mixed membership vector for each actor (Erosheva, 2003, 2004;
Blei et al., 2003). These vectors can be viewed as describing a soft clustering, where each actor belongs to
multiple clusters with different proportions. The binary relationships between actors, i.e. the observed data,
are mediated by per-pair latent variables, each drawn conditioned on an actor’s mixed membership vector.
In its general form, we allow for multiple relationships and covariates. This is a Bayesian hierarchical
model.

The model that is proposed here can also be thought of as a hierarchical model, specifically when a
Gaussian prior is placed on the latent position variables. In contrast, however, each actor belongs to a
single cluster and the corresponding partition governs the observed relationships. There can be variance in
the latent position variables, but the idea of belonging to two or more groups cannot be represented. Pos-
terior uncertainty about cluster membership (depicted by the pie charts in the authors’ figures) is different
from mixed membership, which carries with it an additional level of uncertainty. That said, the latent space
of the authors is quite comparable with our proposed space of cluster proportions. They map actors to
Euclidean space; we map actors to the simplex.

We and the authors have the same goal: infer the underlying latent structure from an observed socio-
matrix. In the mixed membership model, full Markov chain Monte Carlo sampling for any but the simplest
problems is unreasonably expensive. We have appealed to variational methods for a computationally effi-
cient approximation to the posterior. These methods can scale to large matrices because of the simplified
approximation (but at an unknown cost to accuracy). It would be interesting to understand computational
trade-offs for the authors’ method as the sample size grows and when large numbers of covariates are added.

Ronald Breiger (University of Arizona, Tucson)
As Handcock and his colleagues refer to their model (in Section 1) as ‘a stochastic blockmodel’, and as
they apply their latent position cluster model (LPCM) to a data set that was analysed much earlier by
White et al. (1976) in their paper on blockmodels, it may be instructive to focus on the agenda that was
put forward in the earlier paper and on the extent to which the new paper furthers that agenda.

As indicated in their paper’s title, White et al. (1976) insisted on modelling social structure from ‘multiple
networks’. In blockmodel analysis, partitioning of individuals is only one side of a dual problem, the other
being interpretation of the pattern that is formed by that partition. The clique pattern of sociometry,
which seems well generalized by transitivity, homophily on attributes and clustering, as in the LPCM
model, is only one possible pattern for a blockmodel, in which some sets of actors might be understood
as structurally important because they have no ties among themselves but are all tied to the same other
groups. A fundamental concern was modelling the catenation of ties of different networks (such as ‘friends
of advisers’).

Recent lines of research have resulted in breakthroughs in carrying forward this agenda. Generalized
blockmodelling (Doreian et al., 2005) permits ideal block types defining network equivalence to differ
across pairs of blocks. Exponential random-graph modelling is providing a firm statistical foundation
for studying catenation of ties across multiple networks (e.g. Lazega and Pattison (1999), pages 84–85).
And stochastic blockmodelling, which was developed for a partition of actors specified a priori (Wang
and Wong, 1987) or on the basis of a clustering algorithm (the models that were reviewed in Section 1 of
this paper), is supplying a firm statistical foundation to replace the ad hoc clustering procedures that were
often used in the earlier work. The LPCM is so appealing because it is based on a specifiable model of
network structure (though I hope that other models will eventually also be specified), because it articulates
so well with the statistical foundations of exponential random-graph modelling, and because the results
are so sharp. Social networks researchers are in debt to Handcock and his colleagues for these substantial
advances.

Statistical work on blockmodels has focused on partitions of actors, but not yet on specifying patterns
of equivalence among blocks. Future work might address this issue along with partitions across multiple
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networks and those based on wider varieties of patterns of tie (such as those found in negative affect
networks).

Carter T. Butts (University of California, Irvine)
Handcock, Raftery and Tantrum have ably demonstrated the potential for latent space models to address
certain time-worn questions in network analysis within a modern statistical framework. One important
limitation of this model, however, is that it cannot represent systematic biases in the orientation of asym-
metric dyads (apart from covariate and/or activity effects). This is a simple consequence of the symmetry
of |zi − zj| and similarly holds for the projection model of Hoff et al. (2002). The inability to represent
orientation bias is consequential in various settings, particularly where status differences are present.
A natural example with relevance to the present paper would be systems of ranked clusters (Davis and
Leinhardt, 1972; Holland and Leinhardt, 1970), in which we observe multiple cohesive social groups
whose intergroup connections form a partial order. Biased asymmetry is also central to the incidence of
transitivity per se (as opposed to mere triadic clustering), a feature which the authors single out as being
of particular importance.

A simple extension which would rectify this limitation is suggested by the geographical literature on flow
matrices. Given a matrix Y of point-to-point flows, Tobler (1976, 2005) suggested decomposing the matrix
into symmetric .Y+ = .Y + YT/=2/ and skew symmetric .Y− = .Y − YT/=2/ components. The symmetric
component matrix Y+ is modelled via multidimensional scaling methods, whereas the skew symmetric
matrix Y− is modelled via a potential surface f , such that E.Y−

ij /∝f.vi/−f.vj/. Intuitively, overall inter-
action is then governed by proximity in the latent space, whereas the direction of any asymmetries is
determined by relative potential (with flow tending to proceed ‘downhill’ on the potential surface).

Incorporation of this notion into the authors’ model is easily accomplished via modification of equa-
tion (2). Let W = {wi} be a set of latent vertex potentials, with wi ∈ Rk ∀i, and let β2 be a k-vector of
non-negative real parameters. We then posit that all edges are conditionally independent, with log-odds
given by

logit−1
.yij =1|zi, zj , wi, wj , xij ,β/=βT

0 xij −β1|zi − zj|+βT
2 .wi −wj/:

In many circumstances, it seems reasonable to assume k =1 (i.e. a single-status ordering). k>1 is possible,
however, if multiple status dimensions are active within the network. The prior structure for W may be
constructed analogously to that of Z, although the set of invariances is somewhat more restricted. The
addition of vertex potentials to the latent space model is thus a very simple extension, but one which
corrects a consequential limitation of the present approach.

Patrick Doreian (University of Pittsburgh) and Vladimir Batagelj and Anuška Ferligoj (University of
Ljubljana)
The paper offers an intriguing approach to partitioning networks where the goal is to partition the vertices.
Our comment points to an alternative approach: one that we hope is compatible with theirs.

Generalized blockmodelling (Doreian et al., 2005) has a primary goal of discerning the structure of a
network via homomorphisms of the network to simpler images. This entails explicitly partitioning both the
vertices into clusters (called positions) and the relational ties into blocks. Blocks are specified by predicates
that are used to characterize permitted block types that describe structure. Sets of predicates correspond to
specific equivalences. For example, null and complete blocks correspond to structural equivalence whereas
null and one-covered blocks correspond to regular equivalence.

The pattern of ideal blocks in the image characterizes the structure of the image matrix which, in turn,
describes the underlying structure of the empirical network. Specifying a blockmodel can range from spec-
ifying only the permitted block types to specifying a block type for every location in a blockmodel. Given
a specified blockmodel, empirical blockmodels are identified by a local optimization clustering algorithm
that minimizes a criterion function: one that must be compatible with, and sensitive to, the equivalence
that is defined for the specified blockmodel.

In the paper, transitivity is the driving structural feature. However, many blockmodels are consistent
with transitivity. These include complete diagonal blocks with null blocks elsewhere, a complete upper
triangular network with null blocks elsewhere (dominance structures) and complete diagonal blocks, for
positions i and j with the upper .i, j/ block complete and null blocks elsewhere. This suggests that transi-
tivity is ambiguous with regard to block structures and incomplete for specifying network structure.

The likely structure of a high school network is one with denser patches of ties within grades. Six grades
suggest six positions and a blockmodel structure of diag(den) where a density threshold is set. The off-
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Fig. 13. Alternative partition of the adolescent health data

diagonal blocks are null. This specification has the unique partition that is shown in Fig. 13. We use grades
to label vertices and undirected lines for reciprocated ties. The overlap between the grades and the clusters
is shown in Table 5. There is consistency between their partition and ours. Both are readily interpretable.

Our approach is computationally simpler and also explicitly describes network structures. The appeal
of the statistical approach includes the estimation of k and having an inferential foundation. It would be
nice to couple these approaches to the benefit of both.

David Draper (University of California, Santa Cruz)
This excellent paper provides a nice example of contemporary likelihood and Bayesian analysis in an
interesting social sciences setting; I have a comment about validation of the methods proposed. There
are two main ways to evaluate the quality of a statistical method: process (do the assumptions on which
the method is based seem reasonable?) and outcome (when you know what the right answer is, does the
method tend to give you back known truth?). Of these two approaches, outcome evaluations are gener-
ally stronger than process assessments. For me, the methods of this paper pass a judgmental process test
quite well (with one question; see the comment by Mendes and Draper). Regarding outcome, in their
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Table 5. Partition clusters and grade levels

Grade Result for the following clusters:

1 2 3 4 5 6

7 13 1 0 0 0 0
8 0 10 2 0 0 0
9 0 0 10 0 0 6

10 0 0 0 10 0 0
11 0 0 1 0 11 1
12 0 0 0 0 0 4

first example the authors seem happy when their Bayesian fitting method reproduces the cluster structure
previously identified by the researcher who collected the data, and they mention in further support of the
idea that the Bayesian result is ‘good’ that ‘Overall the Bayesian estimate of the latent position cluster
model produces greater distinctions between the groups . . .’. Of course these are not true outcome eval-
uations, because there is no comparison with known truth; in a sense they are more like another kind
of process evaluation (do the results produced by the method seem reasonable?). The validation story
appears a little stronger in the authors’ second example, where the Bayesian fitting method by and large
succeeds in inferring what grade the students were in without using that information in the fitting pro-
cess; the authors are less happy to find that the maximum likelihood approach chose only two clusters,
but this ignores the possibility that the dominant clustering is not by grade but by the (perhaps even
stronger) distinction in the American schooling system between middle school and high school (indeed,
Fig. 4 supports this two-cluster ‘explanation’, with the ninth graders occupying a transitional role between
middle and high school; the authors say that they ‘consider a single school of 71 adolescents from grades
7–12’, but it is rare in the USA for all six of those grades to be taught in the same building). In the
absence of known truth, both the two-cluster and the six-cluster solutions seem plausible, and plausibility
(not validity) is the strongest conclusion one can claim. A more convincing validation exercise would
involve

(a) finding a social network situation in which the actors perceive themselves as members of explicit
social clusters,

(b) eliciting from each actor two kinds of information—the relational ties (e.g. ‘I’m friends with persons
a and g’) and a form of personal ‘truth’ (e.g. answers to questions like ‘I identify myself as a member
of cluster X ’)—and

(c) trying to infer the personal truth from the relational tie information without using the former in the
inferential process.

Has anyone tried this form of validation in the field of social networks?

Marijtje A. J. van Duijn (University of Groningen)
I congratulate the authors on proposing—and making available through accessible software—a very inter-
esting network model that incorporates some important concepts from social network analysis.

The inclusion of transitivity (and reciprocity, in the case of directed relations) through latent positions
is interesting, where cluster membership encompasses these (and possibly more) structural effects through
the use of spatial proximity. In the two applications that were presented in the paper, the definition of
space in two dimensions seems adequate. The authors, however, do not make any suggestion for the inter-
pretation of these dimensions. It might be interesting to investigate whether these dimensions are related
to other network or actor characteristics that are not included in the model, in the same way that the
clusters in the applications were found to correspond—in varying degree—to known attributes. A logical
next step would be to include these attributes in the model. I wonder about a possible trade-off between
interpretability of clusters and model specification.

The random sender and receiver effects of the p2-model (van Duijn et al. (2004), with accompanying
software available at http://stat.gamma.rug.nl/stocnet) could be considered to define a latent
space with a clear interpretation. Unlike the latent position cluster model and the earlier latent distance
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models (Hoff et al., 2002; Hoff, 2005; Shortreed et al., 2006), the p2-model uses the dyadic outcome as
dependent variable and thus explicit incorporates the tendency of reciprocity within dyads. Its focus is on
(fixed) actor and dyadic attribute (homophily) effects, and the model does not take into account transitivity
or other triadic structural effects; nor does it consider the spatial representation of the network.

Model selection seems to be a topic requiring further investigation, in latent space models, and in the
p2-model (Zijlstra et al., 2005). The somewhat heuristic Bayes information criterion approximation for
the latent position cluster model seems to work quite well and is supported by the recent application of
the Bayes information Monte Carlo criterion BICM (Raftery et al., 2007). First results with BICM as a
model selection criterion in the p2-model are encouraging.

Katherine Faust and Miruna Petrescu-Prahova (University of California, Irvine)
Handcock, Raftery and Tantrum should be commended for presenting a principled basis for network
scaling and node clustering. Our comments situate the latent position cluster model in relation to other
social network analysis approaches and point to comparisons that facilitate interpretation.

The latent position cluster model contributes to a venerable tradition in social network analysis: com-
bining spatial representation of social proximity with node clustering to identify subgroupings of actors.
This combination often gives rich insight into social network structure, as seen in the authors’ monastery
and adolescent friendship examples. The latent position cluster model improves on extant methods by
providing a principled way to determine dimensionality and number of clusters. It gives a model-based
approach for network visualization with a precisely defined relationship between node distances and net-
work ties. Combining clusters with positions shows internal differentiation within clusters and proximity
of clusters relative to each other. These are valuable advances over many standard network methods for
visualization and subgroup detection.

Regarding comparison of the two approaches, the authors observe that

‘. . . Bayesian estimate of the latent position cluster model produces greater distinctions between the
groups than the two-stage estimate. . .’

(page 311). Indeed, clusters appear to be more easily distinguishable in Bayesian estimates. This is due
to longer distances between cluster averages, but mostly to lower within-cluster variability in node posi-
tions, a point that is obscured by differently scaled axes in Figs 1 and 3. We refitted the two-dimensional,
three-cluster model to the monastery data by using both approaches and display results in Fig. 14. Mean
within-cluster distances for two-stage estimates are 1.164, 0.911 and 0.642, and for Bayesian estimates are

-2 -1 0 1 2
-2

-1

0

1

2

Fig. 14. Latent positions of monks in a monastery: two-stage maximum likelihood estimates (�) and Bayes-
ian estimates (ı)
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0.531, 0.317 and 0.279, for clusters 1, 2 and 3 respectively. Clearly, clusters from Bayesian estimates are
more compact than are clusters from two-stage maximum likelihood estimates.

Assessing dimensionality is a valuable feature of the model that is not fully exploited in the paper.
With regard to the monastery data, greater variability on the horizontal than vertical axis in Fig. 3, the
apparent ‘horseshoe’ configuration, and only three arcs between clusters 1 (on the left) and 3 (on the right)
suggest the possibility of a one-dimensional solution. The one-dimensional solution has BIC=−360.6542
compared with BIC=−305.8171 for two dimensions, and so it is not appropriate for these data.

Jonathan J. Forster (University of Southampton)
I have two questions concerning this interesting and stimulating paper. The main attraction of using
the Bayes information criterion (BIC) in model comparison is that it can often be calculated by using
outputs of standard packages. Given that the authors have already devoted considerable computational
effort to carefully calculating or simulating posterior distributions, I wondered whether they had consid-
ered also more accurately approximating the marginal likelihood. It strikes me that the extra effort that
is involved would be relatively little, and it would circumvent the difficulties in choosing a suitable n for
the BIC formula (I do not find the argument for using the actual number of ties for the logistic regression
BIC to be all that compelling). More generally, the paper considers spherically distributed clusters in a
two-dimensional latent space. Could the authors give any insight into the benefits or problems that are
associated with relaxing either of these assumptions?

Andrew Gelman (Columbia University, New York)
Social networks are important for their own sake and for their role in propagating phenomena such as
political polarization. In a world full of disputes between and within nations, it is particularly important
to have tools for studying the latent connectedness between people with disagreements and even hatreds,
but who might be more tolerant of each other if they knew what connections they had in common.

I have little to add to the model or the statistical analysis except to point to the work of Watts et al.
(2002), who noted that the social network is actually a union (i.e. overlapping) of networks from family,
friends, church, work and so forth. Ideally, I think that a model of the social network would model these
separate components. Along with this is the notion that networks evolve dynamically, with processes such
as the completion of open triangles (if Ann knows Bob, and Bob knows Carl, then Ann is likely to meet
Carl at some point); see, for example, Kossinets and Watts (2006). Perhaps the model of Handcock and
his colleagues can be generalized to allow this time component (with the time points treated as latent data
if they are not observed).

Finally, I encourage the researchers to think harder about how to present numbers such as those in
Tables 1 and 3; for example, should we care that the estimate of β0 under a particular model is ‘3.475’?
For future work in this area, I recommend thinking carefully about what comparisons are of interest and
then presenting the results graphically to learn about these comparisons (see Gelman et al. (2002)).

Steven M. Goodreau (University of Washington, Seattle)
The authors’ work has many potentially important applications, of which two stand out for me. One is as
an exploratory mechanism for understanding cases in which subpopulations that are defined by exogenous
attributes are expected to form cohesive groups but do not. For example, in on-going work, colleagues
and I are examining 59 of the school groups in the adolescent health study (the same study from which the
authors draw a simple example) and are discovering that some forms of homophily and transitivity are
both of universal importance. However, some groups display much more heterogeneity in their cohesive-
ness than others, most notably Hispanics and, to a lesser extent, native Americans and Asian Americans.
We have considered several reasonable predictors for when these groups do or do not exhibit dyadic and
triadic level cohesion, with limited success. The work that is presented in this paper could provide a novel
method for distinguishing between the multiple ways that such groups can fail to be cohesive through
analysis of both latent clusters and positions. Do they form more than one distinct subgroup, each of
which is itself relatively cohesive? Or do different members of the population cluster tightly with other
subgroups? Is there a large amount of uncertainty in cluster membership for some subset of actors? The
latent position cluster model should allow us to distinguish between these possibilities in a statistically
grounded way.

A second, and perhaps more widely applicable, use of these models could be as a tool for exploring
goodness of fit. Social network modellers are often interested in knowing when their models have managed
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to capture all of the relevant structure in a network, but traditional goodness-of-fit measures often do not
provide a clear answer to this question. Although recent advances have been made in this area (e.g. Hunter
et al. (2007)), such approaches necessarily require decisions about which particular features of network
structure are important for a well fitting model to capture. The current approach would seem to provide
an additional general method: adding the latent position cluster model as a ‘residual’ to a structural model
to identify any remaining structure or clustering. Conceptually, such an approach would not only tell
us whether such structure remained but also provide a sense of its nature. This would be an important
addition to our toolkit for assessing model fit, which is so far an underexplored area of network analysis.

Priscilla E. Greenwood (Arizona State University, Tempe)
The beauty of the latent position cluster model is that no spatial setting is introduced. The setting is
completely abstract, which means that the data set freely introduces its own structure via the inference
step. The basic idea seems extremely flexible and can be applied with various regression models instead of
model (2), and with other multivariate cluster–shape distributions replacing model (3).

The authors mention a possible epidemic interpretation. Suppose that a contagious disease runs its
course in a community, and each individual tells us from whom he contracted the ailment. The method
that is presented here can be used to infer the cluster structure of the epidemic. Epidemic parameters can
be estimated simultaneously. This will be an interesting tool in spatial epidemic theory. Although epidemic
data are rarely available in the form of directed ties, the method can be used as a simulation step. This
example suggests two natural extensions of the latent position cluster model.

Suppose that we add a time structure to the model. Then, since the data give directed ties between
nodes, we shall be able to infer a time ordering along the paths of the graph that is formed by these links,
even though the directions in the data will not always be consistent. The result would give information
about the evolutionary path of the epidemic through the community. Let us consider a genomic context.
Inference about clusters together with time ordering, in a graph that is constructed from an alignment of
homologous genes from several species, would produce a postulated phylogenetic structure.

A second natural extension would be to use the degree aspect of the data, the number of ties coming
from each node, as an ingredient in the estimation of the number of clusters. In the epidemic context the
degree data could be used for inference about the contagion parameter, either as a constant over the graph
or locally within the clusters.

Katharina Gruenberg and Brian Francis (Lancaster University)
We congratulate the authors for having written such an inspiring paper. We would, however, like to point
out two possible extensions which may arise out of real life data. The first relates to directed links. It
is possible to measure links on a scale that allows positive as well as negative values for sociomatrices.
Allowing for negative values allows the simultaneous modelling of ‘like’, ‘dislike’ and ‘indifference’. For
instance with the monk data we could investigate whether there are no ties between the ‘Outcasts’ and
the ‘Loyal Opposition’ or whether their relationship is in fact one of possible mutual dislike. Alterna-
tively, the same model could be used to model the reciprocal of dislike. The second point refers to the
nature of social networks—homophily does not always exist in networks. People may be attracted to
each other if they exhibit opposing ideas—the idea that opposites attract. Such relationships might exist
in prison. Adapting the model to allow both for ‘opposites attracting’ and ‘similars attracting’ is a new
challenge.

Christian Hennig (University College London)
I congratulate the authors for this very stimulating paper. I would like to contribute some thoughts about
the model assumptions.

(a) The authors discuss the transitivity that is imposed by their model, particularly by the triangle
inequality which is assumed to hold in the latent social space, but they do not explain how to check
this model assumption. One possibility could be to apply a parametric bootstrap, i.e. to simulate
new data sets from the fitted model and to compare the bootstrap distribution of the number of ties
in triads with its observed value.

(b) It could be useful in some situations to allow more general covariance matrices within clusters.
This enables, for example, elongated clusters, which have the reasonable social interpretation of
modelling a group as spreading between two extreme points, which is not captured by spherical
clusters.



Discussion on the Paper by Handcock, Raftery and Tantrum 339

(c) It could be useful to include the so-called ‘noise component’ as mentioned in Fraley and Raftery
(1998) in the cluster model, because individuals who do not belong to any cluster may be found in
many social networks.

Peter D. Hoff (University of Washington, Seattle)
Latent variable models of social networks can be motivated in a natural way: for undirected data without
covariates we might view the nodes of a social network as being exchangeable, so that

{Yi,j, i<j} d={Yπi,πj, i<j}
for any permutation π of the node labels. Aldous (1985) has shown that all such data can be expressed
as Yi,j = g.μ, zi, zj , "i,j/, where g is symmetric in its second and third arguments. Thus, the variation in
any exchangeable sociomatrix can be represented with node-specific latent variables {z1, . . . , zn} and pair-
specific noise {"i,j}. Bayesian estimation for the stochastic blockmodel of Nowicki and Snijders (2001) and
the latent position model of Hoff et al. (2002) can be viewed as special cases of this general latent variable
model. In the former, the zs are latent classes and g maps pairs of classes to between-class interaction rates.
In the latter, the zs are vectors and g involves the Euclidean distance between them.

The stochastic blockmodel and the latent position model represent extremes of simplicity and com-
plexity: the stochastic blockmodel implies that, conditionally on the values of the zs, all nodes within a
common class share the same distribution over relationships. In contrast, the standard latent position
model gives a different distribution for every node. The latent position cluster model that was presented
by Handcock, Raftery and Tantrum nicely fills a void between the two approaches: a set of similarly act-
ing, well-connected nodes will be identified and represented as a tight cluster, whereas nodes with unique
behaviours will not be forced into ill-fitting groups.

As described in the paper, latent position models represent homophily. But this homophily is confounded
with stochastic equivalence: similar values of zi and zj imply that i and j are likely to have a tie (since |zi −zj|
is small) and also have similar relationships to other nodes (since |zi −zk|≈ |zj −zk|). This correspondence
is often present in friendship networks, but absent in networks such as the World Wide Web, in which
‘hubs’ connect to similar groups of nodes but not to each other. To separate homophily from structural
equivalence we might consider an ‘eigenvalue decomposition’ model as described by Hoff (2006), in which
the probability of a link between i and j is related to the form z′

i Λ zj . By allowing entries of Λ to be either
positive or negative, such a model can exhibit structural equivalence with or without homophily.

David R. Hunter (Penn State University, University Park)
The paper by Handcock and his colleagues provides an interesting and important extension of the latent
space model of Hoff et al. (2002). A different extension of this work—which may also be applied to the
current paper—allows for more explicit modelling of local network features, such as transitivity, by using
an exponential random-graph model (ERGM).

If the matrix y denotes the entire network (i.e. the collection of all yi,j), then equation (2) implies that

P.Y =y/=
exp.βT

0

∑
i,j

xi,jyi,j/ exp.β1
∑
i,j

|zi − zj|yi,j/

κ.β0,β1/
, .11/

where κ.β0,β1/ is a normalizing constant.
To simplify the notation in equation (11), let

g.y, X/=∑
i,j

xi,jyi,j ,

h.y, Z/=∑
i,j

|zi − zj|yi,j:
.12/

Conditionally on the latent positions Z, the resulting model,

P.Y =y/= exp{βT
0 g.y, X/+β1 h.y, Z/}

κ.β0,β1/
, .13/

is evidently a canonical exponential family (see, for example, Lehmann (1983)) of distributions parameter-
ized by .β0,β1/ with statistics g.y, X/ and h.y, Z/. Therefore, conditionally on Z, model (13) is an ERGM
(‘graph’ here is a synonym for ‘network’). Snijders (2002) and Robins et al. (2007a) give literature reviews
of these models, which are also called p-star models in the literature.
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Importantly, model (3) is still an ERGM, conditional on Z, if the vector g.y, X/ of network statistics
of interest is not of the form (12) that allows the likelihood function to factor nicely as in equation (11).
The simplest such ‘non-factoring’ models were considered by Frank and Strauss (1986), in which g.y, X/
contained terms such as the number of triangles in y, Σi<j<kyi,jyj,kyk,j . Much recent work in the social
networks literature has focused on development of useful statistics g.y, X/ for modelling real network data
(Snijders et al., 2006; Robins et al., 2007b), as well as explaining why some statistics, such as the number
of triangles, lead to ERGMs that fail miserably at modelling these data (Handcock, 2002, 2003).

Model (13) would give the modeller a powerful tool for exploring network structure: for instance, if
the latent positions and cluster assignments of the nodes change dramatically on the introduction of a
particular network statistic into the ERGM, this suggests that the statistic captures an important aspect
of network structure. Yet estimating parameters in a model such as equation (13) is quite difficult when
g.y, X/ is not of the form (12). In principle, the two-stage maximum likelihood estimation of Handcock
and his colleagues should work, though the second stage would rely on a stochastic algorithm that is based
on Markov chain Monte Carlo simulations such as those described by Hunter and Handcock (2006) or
Snijders (2002). The Bayesian scheme that is implemented here is promising, but establishing a reasonable
prior for the ERGM parameter β0 is difficult. Despite the remaining challenges, this paper is a real step
forwards.

Dirk Husmeier and Chris Glasbey (Biomathematics and Statistics Scotland, Edinburgh)
The authors have contributed an intriguing and stimulating paper to the growing literature on the sta-
tistical analysis of network structures. The model also provides a tool for visualizing networks, beyond
existing algorithms such as Cytoscape (Shannon et al., 2003).

Networks are of burgeoning interest in many fields, not least in post-genomic biology (see, for example,
Wang and Chen (2003) and Milo et al. (2004)). Some biological interaction networks violate the underlying
model assumptions, though. For instance, transcription factors regulating sets of unconnected genes and
non-directly interacting proteins bound by the same protein recognition modules both lead to a violation
of the transitivity condition. For this reason, model diagnostics would be a welcome addition to the work.
Given that the authors have proposed a probabilistic generative approach, the application of diagnostics
such as Bayesian p-values should be straightforward.

The model proposed could, in principle, contribute to post-genomic data integration. Consider, for
instance, a situation where protein interactions inferred from yeast two-hybrid experiments are comple-
mented by ribonucleic acid concentrations from transcriptional profiling with microarrays. The model
allows us to infer the intrinsic trade-off between these two noisy and disparate data sets via equation (2),
by treating the ribonucleic acid profiles as covariates and weighting their influence against the protein
interactions via the two hyperparameters β0 and β1.

The authors approach the inference problem in terms of a hierarchical Bayesian model, sampling param-
eters from the posterior distribution with a Gibbs and Metropolis-within-Gibbs scheme, which is sound.
Less sound, however, is inference on the number of clusters. The marginalization of the likelihood is carried
out with respect to the parameters, but not the latent variables (i.e. the Zis). Also, the Bayes information
criterion approximation in equation (10) is rather restrictive. The Bayes information criterion assumes that
the posterior distribution is multivariate Gaussian, ignoring differences in the eigenvalues of the covariance
matrix, and the approach is hence compromised to the extent that this assumption is violated. Although a
full reversible jump Markov chain Monte Carlo scheme might be computationally prohibitive, variational
methods, which are currently very popular in the machine learning community, would presumably provide
a much better approximation to the integration and might therefore provide a promising avenue for future
research.

David Krackhardt (Carnegie Mellon University, Pittsburgh)
First, I want to emphasize the importance of the problem that is addressed by this paper. Cleanly identify-
ing clusters of actors in a social system on the basis of their social ties is an age old pursuit of generations
of scholars, from sociologists and psychologists to mathematicians (e.g. Luce and Perry (1949) and Cart-
wright and Harary (1956)). UCINET (Borgatti et al., 2002), which is the most commonly used package
for analysis of network data, has 20 distinct methods for finding clusters or groups, each with a plethora of
suboptions and choices of parameter which, depending on the data, may yield wildly differing results. This
dizzying array of ‘solutions’ begs the central question: given the observed data, what is the right number of
clusters and what is their composition? Using the Bayes factors approach to answer this critical question
statistically is a major step forwards out of this intellectual morass.
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The paper quickly leads me to ask a couple of extending questions. First, how sensitive is this procedure
to violations of the assumption on independence of dyadic observations? We know that even moderate
amounts of ‘network autocorrelation’ in the data can dramatically affect estimates of standard errors and
concomitant inference tests in traditional analytic procedures (Krackhardt, 1988).

Second, should we rely on empirical demonstrations of the model to provide us with evidence
that the procedure is uncovering the true, underlying group structure? The fact that the procedure recov-
ers the same structure in the Sampson data as other prior analyses could be because the networks
are so clearly clustered that it does not matter what hammer you use to pound the data; they will
always reveal the same story. In the case of ties between adolescents, the fact that their method cleanly
shows discrimination between grades is interesting, but does that mean it was more accurate? Suppose
that the result had not fallen along grade lines. Would that mean that the method was not accurately
assessing real underlying clusters? Or, would it mean instead that networks were clustering on some other
criteria?

Both of these questions could be addressed with appropriate Monte Carlo simulations. The advantage
of such simulations is that you have control over ‘truth’, and by adding precise, known, and yet complex
structures of noise, we can directly assess how well the proposed Bayesian method recaptures this underly-
ing truth. Such simulations would help us to delineate the boundary conditions within which their method
is truly powerful.

Jouni Kuha and Anders Skrondal (London School of Economics and Political Science)
We would like to query the authors’ decision to advocate a method of model selection which is incoherent
with their Bayesian estimation approach. In Section 4, they propose choosing the number of clusters by
using the Bayes information criterion (BIC) statistic, calculated conditionally on posterior estimates Ẑ
of the latent positions. This uses maximum likelihood rather than maximum posterior estimates of the
parameters and implicit prior distributions which differ from the priors that are specified in Section 3.2.
It is thus only the estimated positions Ẑ which actually depend on the results of the Bayesian estimation.

Would different results be obtained from an approach which was more consistent with the specified
Bayesian model? To examine this, we generated 18 latent positions Z (scaled to have unit root mean square,
as in Section 2) from a three-cluster model with parameters equal to the posterior medians in Table 1.
Conditionally on these Z, we calculated, for models of 1–4 clusters, two approximations of 2 log{P.Z/}:
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Fig. 15. Approximations of 2 log{P .z/} for models with 1–4 clusters ( , BIC statistic defined in Sec-
tion 4; – – –, Laplace approximation): latent positions Z were generated from a three-cluster model with
parameters specified by the posterior medians in Table 1 (nD18)
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the Laplace approximation (see equation (4) of Kass and Raftery (1995)) and the rougher BIC statistic of
Section 4. The former depends on the posterior mode of the parameters and on the prior distributions that
are actually used for the Bayesian estimation. For simplicity the values of Z were here the same for each
model. In this case, P.Y |Z/ does not depend on the number of clusters, so model comparison is based on
P.Z/ only.

Fig. 15 shows the values of the BIC and Laplace approximations of 2 log{P.Z/}. Here both statistics
correctly select the three-cluster model but there are some striking differences between them. The Laplace
approximation imposes a larger penalty on the log-likelihood, so the prior distributions that are specified
in Section 3.2 are actually less informative than the unit information priors that are used for the BIC. The
effect of this is to increase the posterior probabilities of simpler models compared with the three-cluster
model. In general, this means that a Bayesian model selection criterion based on the prior distributions of
Section 3.2 may choose a model with fewer clusters than the BIC that is proposed in Section 4.

Having already used the Markov chain Monte Carlo machinery for Bayesian estimation, it would be
natural to obtain direct estimates of Bayes factors as a by-product (without conditioning on Ẑ), instead of
employing rough approximations of them. It seems plausible that a coherent approach that is based directly
on Bayes factors would often favour smaller numbers of clusters than the approach which is considered
in the paper.

Andrew Lawson (University of South Carolina, Columbia)
This paper is a very interesting example of the application of cluster modelling to a network domain. I
have a few comments on the work.

First, the authors make a very strong parametric assumption about the latent positions in the social
space in that

zi ∼
G∑
g=1

λg MVNd.μg,σ2
gId/:

Here, the cluster form is forced to be symmetric, multivariate normal and around a mean level vector {μg}.
They also assume that the components are independent. In the subsequent model fitting, these assump-
tions appear to be unchallenged and yet it could easily be argued that there is a need for asymmetry and
irregularity in social spaces. In other clustering applications this is not enforced (see for example Kim
and Mallick (2002)). I am aware that the mclust software makes such assumptions, and so this affects
the convenient implementation of the model. Have the authors considered relaxing these assumptions or
examined the sensitivity of the model to these parametric restrictions?

Second, in the Bayesian model that is described in Section 3.2 the authors appear to fix certain parame-
ters. For example, the β-parameters have fixed and relatively narrow variances, whereas in many Bayesian
regression contexts these would have hyperpriors. This fixing of the hierarchy could lead to differences
in estimates. Another example is the use of fixed variance priors for the mean parameters. Overall, this
hierarchy truncation could be significant. Can the authors comment on the need for such truncation in
their formulation? Does the implementation depend on this truncation?

Third, with regard to reversible jump and fixed G, the authors appear to avoid the idea of reversible
jump sampling to allow for a dimension change in G. Indeed they do not even discuss the possibility. In
addition, it is not clear from the paper whether G is fixed or allowed to vary. Clearly it would be feasible
to assign a prior distribution for G and to sample it. Another possibility would be to formulate a binary
variable selection model where

Zi ∼
G∑
g=1

ψgλg MVNd.μg,σ2
gId/

with ψg a Bernoulli selection variable which can be sampled. These choices appear to be simpler than the
approach that is advocated by the authors.

Tim F. Liao (University of Illinois, Urbana)
I congratulate Handcock, Raftery and Tantrum for their contribution to the statistical literature on social
network analysis. The model-based approach to analysing social network data represents a great leap
forward: the method effectively overcomes the major disadvantage of previous methods where clique or
cluster memberships are known, an assumption that is required by either the deterministic or the stochastic
version of blockmodelling. I would like to focus on a potentially useful extension of the latent position
cluster model, one that further relaxes the cluster membership assumption of the current method.
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Cluster memberships can be defined as fuzzy rather than crisp and modelled as such. Two research tra-
ditions paved the foundation for this thinking. The sociological literature has long established that groups
intersect within the person (Simmel, 1955), suggesting that one person can belong to multiple clusters,
The idea was revisited in early social network analysis by Breiger (1974). In mathematics, Zadeh (1965)
started a long line of research on fuzzy sets, with useful applications in engineering and in statistics (see,
for example, Manton et al. (1994)).

The current method can easily extend to the use of grade of membership (or fuzzy membership) in
estimating latent clusters. This can be achieved by defining uncertainty in cluster membership as a func-
tion of an actor’s fuzzy membership, or qig =f{μA.i/}, where μA.i/ is the membership function of actor
i in cluster A. Similar functions can be defined for clusters B, C, etc. Therefore, one actor may belong to
multiple clusters to varying degrees. For the current examples, whereas the Sampson data may not need
this extension (Fig. 3), the social network data from the National Longitudinal Study of Adolescent Health
would more probably benefit from a fuzzy operation (Fig. 8).

As this should be a rather natural extension, I hope to see it developed in a sequel paper and implemented
in a new version of latentnet.

Bruno Mendes and David Draper (University of California, Santa Cruz)
In their Bayesian fitting method the authors use conditional posterior model probabilities, which (as usual)
are based on integrated likelihood values, and (as usual) integrated likelihoods can be highly sensitive to
the manner in which diffuse prior distributions on the parameters of each model are specified (and this
sensitivity can persist even with large sample sizes). If the authors had used a Laplace style O.n−1/ approx-
imation to the logarithm of the integrated likelihood, they would have had to face this instability directly,
because terms of the form ln{p.θ̂j|Mj/} (where θ̂j is the maximum likelihood estimator or mode of the
posterior distribution p.θj|y, Mj/ for the parameter vector θj specific to model Mj ; here y are the data)
would arise in the Laplace approximation and could easily vary unstably as a function of the details of
the diffuse prior specification. They appear to avoid this problem by using a cruder O.1/ approximation
based on the Bayes information criterion, in which prior specification details are swept under the rug. The
something-for-nothing bell is ringing in the background here: apparently one can get around a funda-
mental difficulty (which does not necessarily go away as the amount of data increases) with integrated
likelihoods just by adopting a cruder approximation to them. Perhaps the authors can clarify.

Gesine Reinert (University of Oxford)
The authors are to be congratulated on their paper; it provides a novel approach linking statistics and
social network analysis.

An interesting tangent is the recent statistical physics approach to networks. The most basic such con-
struction is the Watts–Strogatz model, where random shortcuts are added to a fixed lattice, the end points
of the shortcuts being chosen uniformly. Slightly more complicated models arise in network growth models,
where a new vertex creates a (fixed or random) number of links to existing vertices, with possibly pref-
erential attachment rules. These classes of so-called small world networks are claimed to provide suitable
models for social networks such as scientific collaboration networks and Internet dating networks; for an
overview see for example Dorogovtsev and Mendes (2003).

As customary in statistical physics, many of the small world network results are of asymptotic nature.
In contrast, the problems that were studied by the authors involve only a small number of vertices, so
asymptotic regimes may not be of any direct interest. In addition, small world network models may not
capture some of the important features in the data. Yet even asymptotic small world network results could
potentially be relevant, not only because increasingly more large social network data sets become available,
but also because such results help to understand better the qualitative behaviour of networks. An example
are results on the emergence of a giant cluster (see Durrett (2006) for an introduction and Bollobas et al.
(2006) for recent progress), which could relate to percolation-based clustering algorithms as in Sasik et al.
(2001).

Beyond Bernoulli random graphs, for all these network models assessing model fit remains an open
question. Often networks are summarized by using the clustering coefficient, the average shortest path
length, the average vertex degrees or the number of occurrences of certain network motifs. Ideally
(at least asymptotic) distributions for some summary statistics would be available to derive parameter
estimates and to develop rigorous statistical tests for model fit. For Watts–Strogatz small world networks
a few results can be found in Barbour and Reinert (2001, 2006), but much more research on these issues
is needed.
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Although networks have recently received considerable attention not only from social scientists but also
from statistical physicists, few statisticians have taken up the challenge of contributing to this field. The
paper under discussion might help to reverse this trend.

Sylvia Richardson and Alex Lewin (Imperial College London)
The authors are to be congratulated on their stimulating paper that will foster the application of the same
ideas in many different domains.

Our comments relate to two aspects.

(a) The authors hardly discuss the choice of the dimension d of the latent space and their examples
always use d =2. It would be reasonable to expect a close relationship between d and the number of
cluster, a relationship that is not discussed. For a large complex network, if the dimension chosen is
too low, then possibly more clusters will seem to be necessary. Could d be included as a parameter
in the analysis so that joint inference is made on d and the number of clusters?

(b) It is unclear to us whether the additive formulation (2) is the best way of including homophily on
observed attributes. There is an interplay between the effect of covariates on the log-odds for links
and the latent space which captures the effect of hidden characteristics of the social actors. A useful
parallel can be drawn with ecological regression and spatial patterns of disease. Usually the eco-
logical regression equation for relating the underlying log-relative-risk for a disease in an area i to
area-specific covariates Xi is written as

log.θi/=βT
0 Xi + si

where si is a Markov random field that captures residual latent spatial structure that is not accounted
for by the covariates. This assumes no interaction between the covariates and the spatial space, and
when this is not reasonable an interaction with space is considered instead, i.e. β0 becomes indexed
by i (see for example Gelfand et al. (2003)). For social networks, we feel that such interaction is
likely and, hence, including covariates solely as a fixed effect might not be appropriate. For example,
you might expect girls and boys to mix more in older years and therefore the influence of gender
similarity to be different for each age cluster. Thus a more realistic model would investigate whether
the homophilic effect of the covariates differs for different clusters. A useful extension of equation
(2) might thus be

log-oddsij =βδi Xij I.δi = δj/+β0Xij I.δi �= δj/−γ|zi − zj|
where δi is the allocation label in the clustering for actor i. We believe that such an extension would
enhance the capacity of the model to account for complex network structure and we would welcome
the authors’ thoughts on the interplay between covariates and the cluster structure.

D. M. Titterington (University of Glasgow)
I have two comments about this interesting paper.

If we denote the set of all group memberships by K and let φ denote all parameters, then a key factor-
ization is

P.Y , Z, K|X,φ/=P.Y |Z, K, X,φ/ P.Z|K, X,φ/ P.K|X,φ/: .14/

In the paper a specialized version of this is used, corresponding to

P.Y , Z, K|X,φ/=P.Y |Z, X,φ/ P.Z|K,φ/ P.K|φ/: .15/

Furthermore, if there is no covariate information X, as is the case in both main examples, then this becomes

P.Y , Z, K|φ/=P.Y |Z,φ/ P.Z|K,φ/ P.K|φ/: .16/

The Bayesian calculations in Section 3.2 essentially use the formula in equation (15), together with a prior
P(φ), as a basis for estimating P.Z, K,φ|Y , X/ by using Markov chain Monte Carlo sampling. In contrast,
in the first stage of the two-stage method in Section 3.1, the method of Hoff et al. (2002) takes the first
factor on the right-hand side of equation (15), namely P.Y |Z, X,β/, where β is the part of φ corresponding
to that factor, and maximizes it with respect to Z and β, with the resulting Ẑ being referred to as the
‘maximum likelihood’ estimates of the latent positions. My first comment is to indicate some anxiety over
this, because it is well known that treating ‘missing values’, such as latent scores, as ‘parameters’ in this
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way can lead to problems such as biases in the estimators of the genuine parameters; see for example
Little and Rubin (1983) and Marriott (1975). However, I concede that the normative maximum likelihood
approach would be computationally difficult. It would involve using the EM algorithm to estimate φ,
with complete-data likelihood given by whichever of equations (14), (15) and (16) is appropriate, and then
obtaining values for the latent positions Z in the same spirit as the calculation of factor scores in factor
analysis.

This brings me to my second point. Suppose, in contrast with equation (15), we factorize P.Y , Z, K|φ/ as

P.Y , Z, K|φ/=P.Y |Z, K,φ/P.Z/P.K|φ/:

If the variables in Y are continuous and if P.Z/ corresponds to Z ∼N.0, I/, then this gives the mixture of
factor analysers model for Y ; see Ghahramani and Beal (2000) and Fokoué and Titterington (2003), and
also Fokoué (2005) for a version that incorporates X -like covariates. It would be appropriate to describe
the version with binary variables in Y as a mixture of latent trait models (Bartholomew, 1987) or a mixture
of density networks (MacKay, 1995). I wonder whether this variation would produce interesting results
in the contexts that are covered by the paper. I suspect probably not, at least so far as interpretability is
concerned, but the relationship between the two types of model may be of interest.

Stanley Wasserman (Indiana University, Bloomington)
At a reception about 10 years ago, part of a memorial tribute to Cliff Clogg at Penn State University, a
well-known, and very good, statistician–sociological methodologist chatted with me about social network
analysis. I was surprised that this well-known person, after telling him that I did network analysis, had
the view that network analysis was just a bunch of indices, with little thought given to statistical models.
And, I felt the weight of his accusation. He was incorrect, of course, but it was a common misperception
at that time.

There is no question that network analysis has come a long way over the past decade, spurred on to
some extent by the many researchers doing statistical modelling and ordinary people who are interested in
networks. Here in the States, there is even a new television show on the ABC network named ‘Six degrees’.
With networks pervasive in our 21st-century popular culture, it is pleasing to know that we are learning
what to do with network data. The paper under discussion here, by Professor Raftery, Professor Handcock
and Dr Tantrum, is a very fine piece of mathematics, a perfect example of the growth of the discipline. It
certainly advances network science, but it leaves me with a few questions.

First, what will be the fate of this clever model? Will it be ignored, as Hoff et al. (2002) has been? Many
statistical approaches to networks (such as correspondence analysis and stochastic blockmodels (Wang
and Wong, 1987)—which include the models that are described here) have been little used. Could a mere
mortal, a social networker from, say, social work, fit this model? A friend of mine years ago remarked that
network data are more complicated than the models that are used to study them. I think that the opposite
is now true.

Second, what has happened to network data analysis, as opposed to statistical network modelling? Sure,
we have great models and the computing ability to fit them by using appropriate and correct estimation
techniques, but very little thought has gone into questions such as ‘why this model and not that one?’.
How does model A compare with models B–Z on a wide range of data sets? The authors ignore this issue.
It may take years to answer questions such as these. We are just now making progress on understand-
ing the exponential family p* (using good ideas such as those in Goodreau (2007)), but we need more
data-oriented papers such as Holland and Leinhardt (1981).

Network research needs more of Cliff Clogg, a good sociologist and a superb statistician, who cared
about data, and less of Bayesian formalism.

The moral of my story at the beginning of my comment is that this very person is now doing research
on excellent, and sophisticated, network models. I feel partially vindicated!

Adriano Velasque Werhli (Biomathematics and Statistics Scotland, Edinburgh) and Peter Ghazal (Scottish
Centre for Genomic Technology and Informatics, Edinburgh)
Although the title of the paper suggests that the method proposed is restricted to the analysis of social
networks, it is interesting to investigate whether it has the scope for wider applications to biomolecular
interaction networks. For this we have applied the algorithm to a genetic network that is related to the
action of interferons, which play a pivotal role in modulating the innate and adaptive mammalian immune
system. The network is shown in Fig. 16(c). We have applied the algorithm in the same way as described in
the paper, applying standard diagnostics to test for convergence of the Markov chain Monte Carlo simu-
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Fig. 16. Genetic network related to the action of interferons: (a) positions of the nodes in the latent space;
(b) resulting positions of the nodes in the latent space after application of the authors’ modification; (c) the
genetic network

lations. Fig. 16(a) shows the positions of the nodes in the latent space, obtained for the number of clusters
with the highest marginal likelihood score (ngroups = 3). It is obvious that no clear cluster formation is
found, and the cluster assignment that was predicted was not biologically meaningful.

The reason for the failure of the algorithm becomes clearer when investigating the interferon gamma
pathway more closely. There are various hub nodes connected to sets of peripheral nodes that are not
themselves interconnected, and this violates the transitivity assumption on which the algorithm is based.
To put this to an empirical test, we modified the interferon network as follows. We identified seven central
regulators (i.e. hub nodes): Statl, Irfl, Irf7, C2ta, Irf3, Irf2 and Irf4. For each regulator, we completely
interconnected all the regulated genes with bidirectional edges and, in addition, introduced bidirectional
edges between the regulators and regulatees. This is to ensure the formation of clique structures that satisfy
the transitivity condition. We then applied the method proposed to the modified network. The resulting
positions of the nodes in the latent space are shown in Fig. 16(b). Fig. 16(c) shows the original network,
where the shading of the nodes indicates the cluster membership (again, we used the number of clusters
that maximizes the marginal likelihood: ngroups = 4). The cluster formations are now much more distinct
and are clearly related to the regulators and their regulated genes. (There is no perfect agreement owing
to interconnections between the cliques and violations of the transitivity condition in other parts of the
network).

This analysis indicates that the algorithm proposed is not generalizable to molecular biological interac-
tion networks that inherently violate the transitivity condition.

The authors replied later, in writing, as follows.
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We thank all the discussants for their stimulating comments. The large number and wide range of discus-
sions suggest that the statistical analysis of social networks is a developing area that is poised for rapid
growth. Many potential applications were mentioned, including to epidemics (Greenwood), post-genomic
data (Husmeier and Glasbey), biomolecular interaction networks (Werhli and Ghazal) and rank data
(Gormley and Murphy).

We appreciate the many positive comments about the latent position cluster model. In particular, we
would underline Snijders’s comment that latent structure models allow data that are missing at random
to be handled almost trivially. This point was not made in our paper, and it is important because often
much of the data about a network of interest is based on network sampling or subject to out-of-design
missingness.

Social network characteristics
Our model was designed to take account of homophily on observed attributes, transitivity and clustering,
but it did not incorporate other important features. One of these is what Snijders calls prominence and is
also referred to as activity, sociability or popularity, namely the fact that some actors tend to send and/or
receive more links than others, sometimes by a large margin. Greenwood emphasizes the importance of
this for applications to infectious disease epidemics. Note that in our examples this was not an important
feature of the data, as can be seen from Figs 1 and 4, for example. This was in part because the data
collection method discouraged it; for example, the school students in the adolescent health data set were
invited to name no more than 10 friends, and most did name close to that number, so the tendency to send
links did not vary greatly between students.

It seems most natural to allow for this by adding random sender and receiver effects to equation (2) of
our paper; this would be a small technical modification to the model. This is similar to the specification of
random effects in the p2-model by van Duijn et al. (2004), as pointed out by Snijders and van Duijn. Hoff
suggests an eigenvalue decomposition model (Hoff, 2007) as an alternative. This seems less easily inter-
pretable than a random-effects model but allows the separation of homophily and structural equivalence.
In our experience, it is also computationally efficient, which is important for scaling the methods to larger
networks.

Another important feature that our model does not include is what Snijders calls hierarchy and Butts
calls asymmetry, namely the tendency in a given dyad for one member to send links and the other to receive
them. As Snijders points out, this can also be represented at least partly by sender and receiver random
effects, Butts suggests a simple and elegant generalization of this idea, in which each actor has a latent,
possibly vector, ‘vertex potential’. This is an important contribution. Overall, we agree with Snijders’s view
that activity and popularity dimensions should be included by default in latent space modelling of social
networks, and this is easy to do in our modelling framework.

Breiger, and Gruenberg and Francis point out that some social networks exhibit negative affect, as a
result of which people with opposite attributes tend to attract. The clearest example is that of heterosexual
sex networks. When the relevant attributes are observed, as in the sex network case, this could be dealt with
naturally in our model by the βT

0 xi,j-term in equation (2), where xi,j represents dissimilarity (e.g. being
of the opposite sex) and β0 is positive. It is indeed a challenge to adapt the model to the situation where
opposites attract and the relevant attributes are unobserved, as Gruenberg and Francis remark.

Lawrance and Krackhardt ask how sensitive our results are to the conditional independence assumption
in equation (1). We think that the answer is ‘not very’. In our model, links are conditionally independent
given the unobserved latent variables zi; thus unconditionally they can be highly dependent. Indeed Hoff,
citing Aldous (1985), points out that all social network data of this type can be represented as conditionally
independent given some actor-specific latent variables, which provides some theoretical basis for thinking
that the conditional independence assumption is not restrictive. As noted by Hunter and Snijders, this
assumption can be tested by incorporating a more general exponential random-graph model (ERGM).

Model-based clustering specification
Our model specifies the distribution of latent positions within a cluster to be multivariate normal with
a spherical covariance matrix. Robinson, Forster, Hennig and Lawson ask whether we could relax this
assumption to allow a more general, non-spherical covariance matrix. We did experiment extensively with
such a model and found that the results were often unstable and difficult to interpret. This seems to be
because the amount of information in the data that is used to define, say, a cluster of seven monks is
actually quite small, consisting of a small number of binary observations, and is not enough to specify a
general covariance matrix with adequate precision. With the simpler model that we used, we did obtain
stable and interpretable results.
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Nevertheless, it is possible that in some cases a non-spherical model could be useful. For example, Bear-
man et al. (2004) reported ‘chaining’ effects in romantic networks of adolescents, and it is possible that
such clusters could be represented by long thin mixture model components, with covariance matrices that
have a high ratio of largest to smallest eigenvalues.

Robinson suggests the use of non-Gaussian components in the mixture model, and Atkinson and
Longford point out that a mixture of normal distributions can represent a non-Gaussian shape rather
than clustering. Our experience, however, is that network data do not provide enough information to
support the use of non-Gaussian components or to lead to the use of more than one Gaussian component
for a single cluster. These issues can be important for clustering observed data, but they seem much less
relevant when clustering latent positions that are not very precisely determined by the data.

Hennig suggests the addition of a low intensity uniform noise component to the mixture model (3) to
represent isolated actors with few or no links. This is an excellent idea, as isolated actors are common in
social networks and are difficult to model. The use of a low intensity uniform noise component to repre-
sent outliers in model-based clustering was proposed by Banfield and Raftery (1993), and Hennig (2004)
has shown that it leads to methods with good classical robustness properties when applied to observed
data.

Choice of distance
We used the Euclidean distance between latent positions to specify our model. This has the advantage
that the resulting positions can be represented in Euclidean space, which is useful for visualization and
interpretation. However, as Snijders points out, other distances, such as the ultrametric, could also be used.

Breiger and Gelman point out that in practice people belong to multiple networks, and that our model
does not account for this. One way to do so could be to change the dissimilarity measure in the latent
space model. For example, we could replace the Euclidean distance |zi − zj| in equation (2) by the co-
ordinatewise minimum dissimilarity, mink |zik −zjk|, where the zik are the co-ordinates of zi. This could be
interpreted as follows. If each co-ordinate corresponds to a different component network (family, friends,
work, neighbourhood, etc.), then proximity on any one of them will be enough to make the chance of a
link high. For example, if Bob works in the same office as Carl but lives far from him, they are almost as
likely to form a link as if they lived closer. Each network could be specified by more than one co-ordinate.
This should not make the estimation problem more complex.

Extensions
Besag, Breiger and Gelman point out that networks evolve dynamically and that extending the model to
incorporate this would be useful. Greenwood points out that this is particularly important for modelling
infectious disease epidemics. We agree, and a start has been made on this by Westveld and Hoff (2005).

Another important extension is to the case where links are not binary, but quantitative, e.g. a measure
of how friendly Bob and Carl are rather than just whether or not they are friends. Such a measure could
be continuous valued, or a count, such as the number of times that they meet per month. It could also be
categorical, for example, if the link could be negative (e.g. dislike) or positive, as pointed out by Gruen-
berg and Francis. Such an extension can be readily accommodated within our framework, by replacing
the logistic regression of our equation (2) by another response model. This could be a generalized linear
model, as proposed by Hoff (2003). See also Oh and Raftery (2003).

Snijders and Hunter suggest combining the latent position cluster model with the ERGM class. This
would allow the direct representation of structural signatures hypothesized under social theories (e.g. tri-
adic balance). The interpretation of the latent component of the model then changes as it then represents
residual social structure. Steps in this direction have been made by Handcock et al. (2003b). One way in
which this combination would be immediately useful is suggested by van Duijn’s discussion. Our model
does not fully model reciprocity. This could be done by replacing our equation (2) by a bivariate binary
response model for yi,j and yj, i jointly, where the model is a p2-model as specified by van Duijn et al.
(2004), but specified conditionally on the distance |zi − zj|.

Robinson, and Richardson and Lewin raise the issue of how the dependence on observed attributes
and the clustering should be jointly specified. This is an important and unresolved issue that we did not
investigate in our paper beyond writing down equation (2). Social network researchers would refer to
Richardson and Lewin’s extension as differential homophily by cluster, and it is an interesting possibility.
More basically, the question of whether dependence on observed attributes is best represented by our
equation (2) at all is an open question. An alternative would be to allow the observed attributes to influ-
ence group membership probability, leading to a mixture-of-experts model, as suggested by Gormley and
Murphy.
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Titterington suggests a different factorization of the likelihood for our model, which suggests possible
alternative models. He suspects that this would not produce interesting results in our context, and we must
agree, but his discussion still places the modelling in a broader framework that could be productive.

Alternative models
Perhaps the most influential alternative to statistical estimation of probability models for social networks
consists of models from statistical physics, such as small world networks and models that are based solely
on degree distributions, as noted by Reinert; see Newman (2003). We must agree with her that these models
may not capture important features of the data, but that some of the results from this literature may be
helpful. We also agree that the physics literature lags in model fitting and assessment, and we note that
statisticians have started to contribute here (Handcock and Jones, 2004; Handcock and Morris, 2007).

The generalized blockmodels that were discussed by Breiger and Doreian, Batagelj and Ferligoj are
based on deterministic algorithms, and as such do not provide a statistical basis for estimation, inference
and choice of the number of groups. Nevertheless, these results may give insight into network structure that
could be useful in statistical modelling, and so we welcome the suggestion to couple the two approaches.
We note that our model is not simply a stochastic blockmodel, as the actors are not structurally equivalent
given the cluster membership, but are, given the latent positions. Thus members of the same cluster are
heterogeneous (e.g. Victor and Romuald in the Loyal Opposition).

Airoldi, Blei and Fienberg, and Liao discuss the possible use of the grade of membership model,
either in place of or in combination with the mixture model that we use here. This would allow
actors to belong to several groups with different ‘grades of membership’. As Liao notes, the idea that
individuals are defined via their group memberships goes back a century to the work of Simmel. These
models would indeed be appropriate when the objective is to represent identity as a function of latent group
memberships.

Sweeting suggested using a Dirichlet process mixture or similar model for the model-based clustering
component of our model. This seems well worth investigating. Our experience with the Dirichlet process
mixture model suggests that care is needed, however; see, for example, Petrone and Raftery (1997). For
example, conditionally on a given number of groups, the Dirichlet process mixture prior tends strongly to
favour very unbalanced groups, which may not be appropriate.

Model fit
We did not report much assessment of the fit of the model in absolute terms in our paper, and it is indeed
important to do this. Given our estimation method, the most natural framework for this is that of pos-
terior predictive checking (Gelman et al., 1996), as alluded to by Husmeier and Glasbey. The statistics
that are used for this could be descriptive network measures capturing important aspects that we want to
reproduce; Reinert lists some common statistics, and Snijders suggests some new measures that could be
used. As noted by Goodreau, a general framework for goodness of fit has been developed by Hunter et al.
(2007) and Goodreau (2006), and posterior predictive checks are implemented in the software Handcock
et al. (2004).

Hennig suggested using a parametric bootstrap, and this could be viewed as an approximation to pos-
terior predictive checking. Snijders noted that this would be time consuming, however, and one advantage
of posterior predictive checking here is that it could follow from our Bayesian estimation method with
modest computational effort.

Reinert suggests using asymptotic theory to obtain the distributions of test statistics, whereas Goodreau
suggests adding a latent space model as a residual to see whether there is any remaining structure. These
suggestions seem worth pursuing. Goodreau’s suggestion should be particularly helpful in decomposing the
variation due to observed covariates, structural signatures (via ERGM terms) and residual social structure.

Draper suggests that we use ground truth to assess the model, in particular the clustering. What we did
in the monks example is similar to what he suggests. The ‘known’ clustering that we used there as ground
truth was based on a large amount of information, including ethnographic study by the researcher S. F.
Sampson, who lived in the monastery for a year and observed the monks’ interactions closely. We know of
no formal attempts at outcome validation using personal ‘truth’ but note that self-identification may not
be definitive. Lawrance’s suggestion that we validate the model by applying it to academic departments
could give an even more compelling form of ground truth!

Model choice
We used Bayes factors, approximated by a version of the Bayes information criterion (BIC), to compare
models. Krackhardt pointed out that there are dozens of competing methods for finding clusters in social
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network data that can give wildly differing results, but until now there has been no clear way to choose
the best method. We agree strongly with him that using Bayes factors is a ‘major step forwards out of this
intellectual morass’.

Forster, and Kuha and Skrondal suggest using an integrated likelihood from the Markov chain Monte
Carlo (MCMC) output rather than our BIC approximation. Although it would seem that this should be
easy, it has turned out to be surprisingly difficult to find a generic method for doing this. Raftery et al.
(2007) reviewed this literature and proposed a criterion called BICM based on the MCMC output. We are
glad that van Duijn could report favourable results with this criterion; Gormley and Murphy (2007) also
reported good results with BICM in a different latent space model.

Husmeier and Glasbey say that we should have integrated out the latent positions when computing the
Bayes factors, but Snijders found that what we did, i.e. keeping the latent positions fixed in the Bayes
factor calculations, was reasonable. This is clearly debatable, but our argument for doing what we did
seems to have been acceptable to most discussants. Husmeier and Glasbey also assert incorrectly that the
derivation of the BIC assumes that the posterior distribution is multivariate normal with an isotropic
diagonal covariance matrix, but in fact the result that the BIC provides an o(l) approximation is valid in
much greater generality (Kass and Wasserman, 1995).

Kuha and Skrondal, and Mendes and Draper suggest using the Laplace method to integrate out the
parameters, rather than the BIC (while keeping the latent positions fixed). This seems like a good idea,
especially since the BIC is derived from the Laplace method. However, Mendes and Draper point out that
the sensitivity of model choice to the prior would then be an issue. Kuha and Skrondal reported some
assessment of that sensitivity and found that with our priors the resulting integrated likelihood tends to
indicate less evidence than the BIC for more complex models. This indicates that our prior is in some sense
more spread out than the unit information prior that underlies the BIC.

This raises an interesting point. Typically, Bayesian estimation is not much affected by making the prior
flatter, but Bayesian model choice can be. Our priors were designed for estimation, so we made sure that
they were at least as spread out as reasonable prior information, but we did not devote much effort to
making sure that they were not too spread out, which is also necessary in the model choice situation. If the
priors were to be used for computing Bayes factors more exactly, we might need to revisit them to ensure
that they are not too spread out. Overall, we feel that our BIC approximation provides a reasonably simple
and robust method for model comparison in the present context.

Choice of dimension
We used two dimensions for the latent space throughout, but it would be possible, and perhaps desirable,
to make the choice of dimension data dependent. Oh and Raftery (2003) showed how to do this by using
Bayes factors for a similar model, based on Oh and Raftery (2001). They found, perhaps surprisingly,
that there was little interaction between the dimension of the latent space and the number of clusters. If
this also holds in the present context, there would be little need for the simultaneous choice of dimension
and number of clusters that was suggested by Richardson and Lewin. Note that a direct use of the BIC
for choice of dimension, as done by Faust and Petrescu-Prahova, is not correct for choice of dimension
here.

Raftery et al. (2007) applied their methods for estimating integrated likelihoods from MCMC output to
precisely this problem and found that for the monks network the choice of two dimensions was favoured.
This could provide a simpler and more generic solution to the problem. For the adolescent health data,
a third dimension does not lead to clear separation of the higher grades. The choice of one dimension
does lead to groups approximately ordered in grade, although with substantially less definition than the
two-dimensional version.

Estimation
Leslie suggested improving the efficiency of our MCMC algorithm by updating the group memberships
and the latent positions simultaneously. This sounds like a good idea, although it is an empirical question
whether the gain in efficiency is worth the resulting greater complexity of the algorithm. Kent points out
that it is the shape of the configuration of latent positions that is important. This is correct, and we took
account of that by the Procrustes step in our algorithm. However, we would welcome further insights
from shape analysis. Snijders recommended assessing how well the data determine the latent positions and
suggested sensitivity analysis for this. In fact, the posterior distribution of the latent positions (after the
Procrustes step) gives an assessment of this that comes right out of our method, although we did not have
space to show it in the paper. Sophisticated plotting of the posterior is implemented in the package, and
example code is given to produce the plots for the monks data.
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Besag, and Blei and Fienberg asked about the important issue of scalability of the algorithm to larger
networks. We have successfully applied the methods to networks with up to 3000 nodes. If necessary, for
very large networks, it may be possible to approximate the algorithm without compromising its essential
features by case–control sampling of ties in the computation of the likelihood or something like the ICM
algorithm (Besag, 1986).

Incidentally, Besag asked why we showed results for only one school in the adolescent health data. This
was convenient for presentation, but we have applied the methods to all the schools (Hunter et al., 2006;
Goodreau, 2007). We found that the method provides insight into both clusters and segregation. However,
for medium-to-large schools (above 500 students) the visualization methods need to be more sophisticated
to extract the information (e.g. zooming and slicing).

General
Wasserman’s frustration in understanding recent advances in statistical network modelling is understand-
able. Making complex models accessible to practitioners is important. We believe that providing high
quality software is becoming an essential part of publication, not least because it allows others to evaluate
and critique the models proposed (Handcock et al., 2003a, 2004; Boer et al., 2003). Using this software,
social network practitioners, including those from social work, routinely fit these and ERGMs in a class
that is taught by one of us (Handcock)! This is part of the reason that the model of Hoff et al. (2002) is
much used and extended (as the discussants testify).
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