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Abstract

In a world that relies increasingly on large amounts of data
and on powerful Machine Learning (ML) models, the veracity
of decisions made by these systems is essential. Adversarial
samples are inputs that have been perturbed to mislead the in-
terpretation of the ML and are a dangerous vulnerability. Our
research takes a first step into what can be an important innova-
tion in cognitive science: we analyzed human’s judgments and
decisions when confronted with targeted (inputs constructed
to make a ML model purposely misclassify an input as some-
thing else) and non-targeted (a noisy perturbed input that tries
to trick the ML model) adversarial samples. Our findings sug-
gest that although ML models that produce non-targeted adver-
sarial samples can be more efficient than targeted samples they
result in more incorrect human classifications than those of tar-
geted samples. In other words, non-targeted samples interfered
more with human perception and categorization decisions than
targeted samples.
Keywords: Adversarial Machine Learning; Human Decisions
Making; Adversarial Samples.

Introduction
The fields of Cognitive Science and Machine Learning (ML)
are converging (Gershman, Horvitz, & Tenenbaum, 2015).
Cognitive Science studies show our minds learn from inter-
action with the world, how we “satisfice” rather than “op-
timize” decisions under uncertainty, and how to generalize
from limited experience to novel situations (Simon, 1956). In
contrast, ML aims at computational rationality and efficiency:
producing human-like decisions that are faster, accurate, and
adaptable to the uncertainties of the world (Gershman et al.,
2015).

ML and Deep Neural Network (DNN) models are chang-
ing our world: they are part of search engines, recommen-
dation systems, social media sites and new forms of social
transportation communities. For example, autonomous cars
use sensors to “see” the road and use ML/DNN models to
make accurate decisions. These models learn discriminative
features of road signs (e.g., a STOP sign) to “interpret” them
and take action. Although very powerful, ML and DNN mod-
els are also severely vulnerable to something called adversar-
ial samples: inputs crafted with the intention of causing a ML
or DNN model to misclassify the input object. The conse-
quence is that slight alterations of the “transfer stimuli” (e.g.,
a STOP sign) can easily fool the ML algorithms and result in
very different interpretations. It is not too difficult for attack-
ers to carefully construct such inputs that can mislead a ML
or DNN models into making an incorrect decision. Given that
ML tools often rely on trained data, something that is dissim-
ilar to items that the models have been trained to recognize,
might be difficult to recognize, and worse, it might be incor-
rectly classified. The problem of generalization out of what

one has been trained on, is also a human cognitive problem
that has been demonstrated in studies of learning and trans-
fer of learning (Schmidt & Bjork, 1992; Soderstrom & Bjork,
2015; Gonzalez & Madhavan, 2011).

There are two broad approaches to developing adversarial
stimuli that are capable of misleading ML and DNN models:
targeted and non-targeted. In targeted attacks, minimal mod-
ifications are made to the input stimuli (e.g., images) such that
they will be misclassified by the ML models as another spe-
cific target class (e.g., modify a STOP sign in such a way that
the ML model in an autonomous vehicle interprets it as a GO
sign instead). In non-targeted attacks, modifications are made
to the input stimuli but there is no specific class intended; the
goal is to make the model misclassify the perturbed input to
any class/output, different from the actual class.

ML researchers are trying to understand this problem in a
new field of research named Adversarial Machine Learning
(AML) (Huang, Joseph, Nelson, Rubinstein, & Tygar, 2011;
Papernot et al., 2016). Researchers are currently dealing with
the fundamental trade-off of designing algorithms that are
computationally efficient while at the same time resist adver-
sarial perturbations (Goodfellow, Shlens, & Szegedy, 2014).
However, little or no work has been done to understand how
humans make judgments and decisions based on adversarial
samples. An assumption is that a targeted approach would be
able to produce perturbations that do not impact human judg-
ment whereas non-targeted methods would appear like noise
to human subjects. Beyond intellectual curiosity, the question
of whether humans can recognize a sample as adversarial is
relevant as it is expected that humans would be able to inter-
vene on decisions made by a compromised ML model.

This research takes the initial challenge of comparing hu-
man classification, discrimination, and similarity decisions
on targeted and non-targeted adversarial samples generated
by two state-of-the-art AML algorithms. In Experiment 1,
we test adversarial samples generated using JSMA (Jacobian-
based Saliency Map Attack), a targeted approach proposed
by (Papernot et al., 2016); in Experiment 2 we test adver-
sarial samples generated using FGSM (Fast Gradient Sign
Method), a non-targeted approach proposed by (Goodfellow
et al., 2014). As we will discuss below, FGSM is computa-
tionally more efficient than JSMA. However, participants in
Experiment 2 were less likely to correctly classify and dis-
criminate the stimulus than participants in Experiment 1.

In what follows, we first give a brief introduction to the
ML models and the adversarial sample generation. Next, we
present two separate experiments conducted to collect human
classification discrimination and similarity decisions with tar-



geted and non-targeted adversarial samples. Finally, we com-
pare and discuss the results from the two experiments.

Machine Learning Models and Adversarial
Samples of Handwritten Digits

The FGSM and JSMA models models were developed and
tested to attack a feedforward neural network model that was
trained on the MNIST dataset containing images of handwrit-
ten digits (Yann, Corinna, & Christopher, 1998). These im-
ages are represented as vectors of 784 features (one for each
of the 28x28 = 784 pixels), and each feature corresponding to
a pixel intensity normalized to values between 0 and 1. The
hidden layer neurons in the network each use logistic sigmoid
function as their activation function. Let J(θ,x,y) represent
the loss function used to train the neural network in both al-
gorithms where θ represents the neural network model, x rep-
resents the input and y represents the label/class for x. We
will use these notations to describe the two algorithms.

The Fast Gradient Sign Method (FGSM) used a simple
and efficient method for finding perturbations where, given
a source image x, each of the 784 features representing the
input is perturbed in the direction of the gradient by magni-
tude of ε. ε represents the magnitude of the perturbation. The
strength of perturbation at every feature is limited by the same
constant parameter ε and the resultant is a adversarial stimuli
x̃ of the original input x. With even small ε it is possible to
mislead DNNs with a high success rate. Due to the nature
of gradient descent on the loss function, it is not possible for
the model to anticipate the outcome and therefore, the goal is
to misclassify adversarial input x̃ as any other class than its
correct class (y). Hence, it is a non-targeted form of attack.

Papernot et al (2016) proposed the Jacobian-based
Saliency Map Attack (JSMA) to generate adversarial sam-
ples to mislead neural network model. This model used an
iterative approach to modify a limited and specific set of fea-
tures (among the 784 features) of the input image (x) for
targeted misclassification. In this approach, an adversarial
saliency map is calculated for the input image which con-
tains the scores for each pixel that reflect how the pixel can
help in achieving the intended target class (ỹ) while reducing
the probability of achieving any other class. Pixels with high
saliency scores are perturbed by ε repeatedly until the model
misclassifies the input as the intended target class. Peper-
not and colleagues found that a deep neural network can be
fooled with high success (97%) while only requiring small
modifications (4.02%) of the input features of a sample; while
humans identified 97.4% of the adversarial samples correctly
and classified 95.3% of the adversarial samples correctly.

Adversarial Image Generation We quantified the amount
of perturbation introduced by each algorithm by computing
the pixel-wise (i, j) difference between the unperturbed and
adversarial image:

Dx,x̃ = ∑
i=1

∑
j=1
|xi j− x̃i j| (1)

General Method
In two experiments, we tested the effect of adversarial im-
ages from two algorithms (JSMA: Experiment 1; FGSM: Ex-
periment 2) on human performance within classification, dis-
crimination, and similarity tasks. The general procedure is
outlined below, followed by specific details about the partici-
pants and stimuli for each experiment individually.

Procedure Participants were told they would view “images
of numbers” and be asked to complete three perceptual tasks,
which alternated from trial-to-trial (see Figure 1). In the clas-
sification task, participants freely reported the identity of a
single digit; in the discrimination task, they responded by in-
dicating whether two images showed the “same” or “differ-
ent” digits by clicking a corresponding button; finally, in the
similarity task, participants rated two images, from 0 (“not
similar at all”) to 10 (“identical”) using a sliding bar. Each
trial included a brief instruction reminder, the stimulus im-
age(s), and a response field. Trials were not time constrained,
and responses were recorded when the participant indicated
they were ready to move to the next trial by clicking a red
arrow button.

In the tasks requiring a comparison between two images
(discrimination, similarity), there were three types of stim-
uli. In Source-Source pairs, an unperturbed MNIST image
was paired against itself, which served as a control condi-
tion. The remaining comparisons paired images from dif-
ferent digit classes (0-9) with one another in two ways. In
Source-Adversarial pairs, an unperturbed MNIST digit was
paired with an adversarially modified version of itself. Fi-
nally, in Target-Adversarial pairs, an adversarial image was
compared against an unmodified image from a different class.
In the case of stimuli generated by JSMA, this was the class
that was targeted by the algorithm; for FGSM stimuli, the al-
gorithm operates without targeting a specific output class, so
the comparison image chosen was digit class which the DNN
reported when classifying the adversarial image. Examples
of the three stimulus pairs can be seen in Figure 2.

In the classification task, only a single image was pre-
sented, and it was either an unperturbed MNIST digit (taken
from Source-Source pairs), or an adversarial image (from
Source-Adversarial and Target-Adversarial pairs).

For each task type, participants completed 70 trials for a
total of 210 trials. All participants finished the task within 15
and 30 minutes.

Experiment 1
In Experiment 1, we tested human classification, discrimina-
tion, and similarity judgments over images generated using
the JSMA algorithm (targeted attack).

Method
Participants We recruited participants via Amazon’s Me-
chanical Turk, and collected data using Qualtrics (with IRB
approval from Carnegie Mellon University). Participants (n =



Figure 1: Example images demonstrating the three tasks per-
formed by the subjects in both experiments: the classification
task (top row), the discrimination task (middle row) and the
similarity task (bottom row)

Figure 2: Examples of the image pairs shown in Experiments
1 (left columns) and Experiment 2 (right columns).

300; 113 females; mean age = 34.25 years) first provided in-
formed consent and confirmed normal or corrected-to-normal
vision. Monetary compensation was based on performance
(base pay rate $4, average bonus: $2.71).

Stimuli The image pairs used in Experiment 1 were pro-
duced by the JSMA algorithm, which were selected from a
larger database of image pairs provided by the authors of Pa-
pernot et al.(2016). For each Source-Adversarial and Target-
Adversarial comparison, we selected images with the largest
adversarial distance (see Equation 1). The average distance
for stimuli generated by the JSMA algorithm, among those
tested in this study was 54 pixels (min = 14; max = 100).

Design Due to the large number of comparisons, we cre-
ated three non-overlapping stimulus sets and randomly as-
signed participants to one of three groups. Within each group,
the same stimulus set was used in all three tasks (classi-
fication, discrimination, and similarity). All three stimu-
lus sets included Source-Source comparisons for every digit
(0/0,1/1, ...,9/9). The nine remaining, non-matching com-
parisons for each digit (e.g. 0/1,0/2, ...9/8) were divided
between the three participant groups. For example, Group 1
judged pairs of images comparing an unperturbed ‘0’ against
adversarial images from categories ‘2’, ‘3’, and ‘9’, while
Group 2 compared against ‘4’, ‘5’, and ‘9’, and Group 3
saw ‘1’, ‘6’, and ‘7’. Each of these non-matching pairs was
tested twice, once as a Source-Adversarial pair and once as a
Adversarial-Target pair.

Experiment 2
In order to contextualize the results of Experiment 1 within
the larger adversarial domain, we measured human judgments
on images generated using a different algorithm, “the fast gra-
dient sign method (FGSM)” proposed by Goodfellow et al.
(2014).

Method
Participants We recruited a new sample of participants (n
= 300; 135 female; mean age = 34.72 years) using the same
process as Experiment 1. Average bonus pay was $2.71.

Stimuli We chose images from FGSM with the largest ad-
versarial distance. The range of distances among tested stim-
uli was more limited than in Experiment 1, (mean = 296.1,
min = 78.4, max = 313.6). Due to the non-targeted nature
of the FGSM algorithm, there were few digit classes that,
when perturbed never generated adversarial images that were
misclassified as certain other digits. For example, adversarial
modifications to images portraying the digit, “1”, were never
misclassified as “0”, and the same was true for the pairs,
1/6,4/1,5/1,7/6. In order to prevent biases arising from
participants noticing the absence of these comparisons, we
substituted these missing pairs with least perturbed images
from the JSMA algorithm, and removed responses to these
stimuli from all analyses (a total of 5% of the total trials).

Design We divided the 10×10 stimuli in the same manner
as in Experiment 1, though the exact distribution of stimu-
lus pairs was randomized, such that e.g. Group 1 performed
comparisons of digit, ‘1’ against ‘2’, ‘4’, and ‘6’. As before,
each group was tested on self-comparisons for all digits and
against three non-self comparisons.

Results
We first examined participants’ accuracy in the classification
task. In Experiment 1, participants correctly reported the pre-
sented digit on 95.5% of classification trials. In Experiment
2, the average accuracy decreased to 90.2% (see Table 1). A
generalized linear, mixed effects model predicting the num-



ber of errors (binomial, link = logit)1 between unperturbed
and adversarial images, and across experiments, revealed a
significant main effect of Perturbation, F(1,1796) = 290.21,
p <.001, as well as a significant main effect of Experiment,
F(1,1796) = 25.574, p < .001. These results are consistent
with the human performance data reported in Papernot et al.
(2016), which showed that human classification of adversar-
ial stimuli remains near ceiling, except at the highest levels
of perturbation. The difference in accuracy when compar-
ing across the two algorithms suggests that FGSM was more
successful in confusing human judgments, perhaps due to the
larger amount of perturbation, or the more global pattern of
pixel changes.

Table 1: Classification Accuracy

Experiment 1 Experiment 2
Unperturbed 96.8% 97.8%
Adversarial 94.2% 82.7%

Total 95.5% 90.2%

We next examined whether participants would correctly
identify pairs of images showing the ’same’ or ’different’ dig-
its, in spite of the adversarial modifications. Overall accuracy
was at 99.1% in Experiment 1, and 96.6% in Experiment
2 (see Table 2). A generalized, linear mixed-effects model
over Trial Type (Source-Source, Source-Adversarial, Target-
Adversarial) and Experiment (Experiment 1, Experiment 2)
showed a significant main effects of Trial Type, F(2,1794)
= 71.937, p < .001. There was also a main effect of Ex-
periment, F(1,1794) = 17.76, p < .001, and a significant 2-
way interaction, F(2,1794) = 43.818, p < .001. These results
were driven primarily by better performance for the adver-
sarial comparisons (Source-Adversarial, Target-Adversarial)
in Experiment 1 than in Experiment 2, with no difference
in Source-Source trials. This finding extends past research,
which has focused almost exclusively on human performance
in classification tasks, to a novel task domain. This result
also aligns with the pattern of results in the classification task,
which showed that performance on images produced by the
FGSM algorithm tended to be worse than over those gener-
ated by JSMA.

Table 2: Discrimination Accuracy

Experiment 1 Experiment 2
Source-Source 99.9% 99.9%

Source-Adversarial 97.9% 95.0%
Target-Adversarial 99.7% 94.8%

Total 99.1% 96.6%

In the similarity task, we examined whether there were dif-

1models fit using MATLAB function, fitglme, using the Lapla-
cian fitting method

ferences across the Experiments or the image Type, using a
linear mixed-effects model. Similarity ratings were signifi-
cantly different across Trial Types; F(2,1794) = 13,881, p <
.001. This difference was mostly in the Source-Adversarial
and Target-Adversarial comparisons (see Figure 4). There
was not a significant main effect of Experiment, F(1,1794)
= .712, p > .05, but the interaction between Trial Type and
Experiment was significant, F(2,1794) = 46.627, p < .001.
This latter effect was due to the reversal in the two adver-
sarial comparisons. While the ratings in Target-Adversarial
pairs remained lower than the other comparisons, the addi-
tional noise introduced by FGSM seems to have made the
adversarial image appear more similar to the intended target
category than the procedure adopted by JSMA.

One possible explanation for this finding is that the dis-
tance between adversarial and source images was larger for
FGSM than JSMA, so we followed up by examining the im-
pact of adversarial distance on similarity rating. Due to the
limited range of distances in the FGSM algorithm, we fo-
cused the analysis on Source-Adversarial pairs generated by
JSMA. Adversarial Distance (see equation (1)) for Source-
Adversarial image pairs did not significantly predict human
performance on the classification or discrimination tasks,
(both F’s < 3.5, p’s > .05), but there was a significant neg-
ative relationship, β = −.021(.002), in the similarity task,
F(1,88) = 86.382, p < .001 (see Figure 3). Participants rated
images with more distortions as less similar than those with
fewer. The JSMA algorithm was designed to find the mini-
mal perturbations necessary to produce misclassifications by
the deep neural network model (DNN), and thus remain rela-
tively undetected by human observers. This finding is critical
in that it demonstrates that, while performance on discrimi-
nation and classification would appear to suggest that human
observers were not misled by the adversarial changes, these
explicit ratings of similarity reveal a different story. Not only
are observers sensitive to the changes, but their responses are
tightly mapped to the amount of change introduced by the
algorithm. This more sensitive measure likely provides a bet-
ter means of evaluating the efficacy of adversarial models in
evading human detection.

Finally, in order to assess whether performance on one task
(e.g. similarity) could be used to predict performance in the
other tasks, we correlated performance across the three tasks
within each experiment.

In Experiment 1, individual performance in the classifi-
cation and discrimination tasks was significantly correlated,
r(298) = 0.511, p < .001. Due to the stark differences in sim-
ilarity judgments by trial type, we ran separate correlations
for each stimulus type: Source-Adversarial similarity scores
were significantly correlated with classification performance,
r(298) = .152, p < .01, and marginally related to discrimi-
nation, r(298) = .112, p = .053. Target-Adversarial perfor-
mance was likewise correlated between similarity, r(298) = -
.129, p < .05, and discrimination, r(298) = -.131, p < .05. Fi-
nally, Source-Source similarity judgments were only related



Figure 3: The amount of perturbation (Adverarial Distance)
was significantly related to participants’ similarity ratings
over Source-Adversarial image pairs in Experiment 1

to discrimination performance, r(298) = .272, p < .001.
In Experiment 2, individual performance in the classifi-

cation and discrimination tasks was significantly correlated,
r(298) = 0.839, p < .001. Separate correlations by stimu-
lus type in the similarity task showed that Target-Adversarial
judgments were significantly negatively correlated with clas-
sification performance, r(298) = -.328, p < .001, and re-
lated to discrimination, r(298) = -.471, p < .001. Source-
Adversarial performance was correlated between similarity,
r(298) and discrimination, r(298) = .129, p < .05.

Together, these results imply that the perceptual represen-
tations underpinning the different tasks were similar, and that
individuals’ performance on one task could be used to predict
their abilities in the other domains. If, for example, a subject
rates adversarial images as particularly dissimiliar to their un-
perturbed counterparts, they may be less prone to incorrectly
classify the image, and therefore be less vulnerable to these
types of perturbations.

Figure 4: Mean similarity ratings across Experiments 1 (blue)
and 2 (red), separated by the image pair shown to subjects.

General Discussion
Current research on AML claims that humans are insensi-
tive to the perturbations introduced in adversarial samples;
however, these claims are not based on evidence from em-
pirical research. This study represents the first systematic at-
tempt to test humans sensitivity to adversarial stimuli, and
the results suggest that previous claims may have been over-
stated. Although adversarial stimuli are very effective in fool-
ing ML models with incorrect classifications hovering be-
tween 97% and 99.9% (Papernot et al., 2016; Goodfellow et
al., 2014), human performance reveals much greater variation
depending on task (classification, discrimination, similarity)
and model (FGSM, JSMA). The key question emerging from
these results is how to interpret this performance.

Our main point is that lack of sensitivity to adversarial
stimuli does not necessarily imply that humans are unable
to detect these perturbations. Similarity judgments between
stimuli revealed significant differences between unperturbed
and perturbed images (source-adversarial, adversarial-target)
and the magnitude of these differences was scaled to the cal-
culated distance between the stimuli. Likewise, participants
were very good at discriminating the image of a digit from
its adversarial target, even though the adversarial target was
classified by humans as representing the same number as the
unperturbed image.

Presumably, machine learning models would also discrim-
inate between adversarial and unperturbed stimuli, but this
is because they would classify the two stimuli as different
numbers (i.e., source and adversarial target). By contrast, hu-
mans discriminate the stimuli not because they classify them
differently, but because they detect featural differences cor-
responding to texture density or contrast or discontinuities in
the contour, to name just a few candidates. It is often risky
to draw parallels between ML models, such as DNNs and
human information processing because we still know so little
about how neural networks work. These adversarial examples
simply demonstrate the fragility of these ML models. This is
why drawing direct comparisons between human cognition
and neural networks and anthropomorphizing them may be
unfair (Gershman et al., 2015; Chollet, 2017).

It is noteworthy that we observed a significant difference
between the two forms of attack (targeted vs non-targeted)
in terms of their ability to produce human recognizable ad-
versarial images. We found that humans are less accurate in
classifying adversarial images generated by FGSM, a non-
targeted form of attack, compared to human performance on
the same task with images generated by JSMA, a targeted
form of attack. In other words, a non-targeted perturbation
of pixel intensities is less successful at fooling humans while
making classification decisions. This performance difference
was significantly reduced when participants made judgments
on adversarial images during the discrimination task. As
such, these results demonstrate that the more effective adver-
sarial model results in poorer classification and discrimina-
tion by humans, which represents a disadvantage when trying



to detect adversarial stimuli.
Of course, it is premature to generalize from these prelim-

inary findings that the FGSM algorithm is more effective in
fooling machines than humans, because the conclusions de-
pend to a large extent on the specific information processing
task administered to humans. Although our results revealed
that performance in some of these tasks is correlated, the cor-
relations were generally very small accounting for no more
than 25% of the variance and in most cases much less. We
thus conclude that a complete testing of human performance
with adversarial stimuli will require a broad range of tasks
assessing different perceptual and cognitive skills.

It should also be noted that these adversarial stimuli were
generated with the primary goal of making ML and DNN
models to misclassify and do not take into account the hu-
man in the loop (yet). Does integrating human feedback with
ML solve the problem of adversarial perturbations? This is
an question for future research. While humans may not be
highly susceptible to these specific adversarial samples they
may be susceptible to attacks that exploit gaps and limitations
in human cognition. For example, we are easily fooled by
optical illusions and easily fooled by spear phishing emails.
Attacks that fool both ML and humans alike can have more
severe repercussions. Hence it is critical to study the effect of
adversarial algorithms on both ML and humans.

Much work still needs to be done in studying the interac-
tion between human and machine intelligence. Our current
work is limited to simple, black and white images, in a do-
main where we all have significant knowledge of the stim-
uli (i.e., hand-written numbers). We know, however, that
adversarial attacks are considerably more difficult to con-
duct in practice. Images are more naturalistic (color, shape,
sizes), distance and movement change the visual view consid-
erably, and information may be presented in different modes
(e.g.vision, voice). Furthermore, context information is avail-
able in practice. Although current AML research is only in its
infancy, the speed at which this is advancing suggests that we
need to try to keep pace with malicious applications of this
technology in order to understand how to protect our systems
from possible attacks. As we continue to progress toward the
future, it is safe to assume that the ML models, for example,
those used in autonomous cars, will become more sophisti-
cated and robust than the ones currently available to protect
against adversaries. Thus, it is important to best understand
the vulnerability of these algorithms as well as how humans
can defend against them, because we have observed that even
the most sophisticated algorithms can be fooled even with
small perturbations. It is equally important to understand the
extent to which humans can be fooled with adversarial sam-
ples before we advocate for supervised learning by humans
(Veeramachaneni, Arnaldo, Korrapati, Bassias, & Li, 2016).
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