
What Are Privacy- 
Preserving Analytics?
The term “privacy-enhancing technol-
ogies” (PETs) has been used to refer, 
broadly, to methods, tools, or tech-
nologies devised to protect individual 
privacy. By the term “privacy-preserv-
ing analytics,” we refer to a particular 
subset of PETs that attempt to protect 
individual data while permitting some 
degree of data analytics.

Some PPAs are defined by specific 
methods for ensuring private analysis. 
Differential privacy, for example,  can 
be applied to certain kinds of federated 
learning—a class of machine learning 
methods in which a model is trained 
across multiple devices without send-

O
V E R  T H E  PA S T  few decades, 
computer scientists and 
statisticians have devel-
oped tools to achieve the 
dual goals of protecting 

individuals’ private data while permit-
ting beneficial analysis of their data. 
Examples include techniques and 
standards such as blind signatures, 
k-anonymity, differential privacy, and 
federated learning. We refer to such 
approaches as privacy-preserving ana-
lytics, or PPAs. The privacy research 
community has grown increasingly 
interested in these tools. Their de-
ployment, however, has also been met 
with controversy. The U.S. Census Bu-
reau, for instance, has faced a lawsuit 
over its differentially private disclo-
sure avoidance system; opposition to 
the new privacy plans garnered sup-
port from both politicians and civil 
rights groups.3,11

In theory, PPAs can offer a compro-
mise between user privacy and statis-
tical utility by helping researchers and 
organizations maneuver through the 
trade-offs between disclosure risks 
and data utility. In practice, the effects 
of these techniques are complex, ob-
fuscated, and largely untested. While 
the interest in PPAs has been growing 
particularly among computer scien-
tists and statisticians, there is a need 
for complementary social science re-
search on the downstream impacts 
of these tools13—that is, the concrete 
ripples those technologies may cast 
for individuals and societies. In this 
Viewpoint, we advocate for an inter-

disciplinary, empirically grounded re-
search agenda on PPAs that connects 
social and computer scientists.

A complete survey of this area of re-
search would vastly exceed the space 
limitations for this Viewpoint.a In-
stead, after briefly summarizing what 
PPAs are, we focus on discussing how 
their rising deployment in real-world 
applications has been a cause of con-
troversy, but also why PPAs are prom-
ising tools that both deserve and ne-
cessitate interdisciplinary research 
attention.

a	 For an annotated bibliography of additional 
references not included in this Viewpoint, see 
https://bit.ly/3I2lGHN
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ing the original training data to a cen-
tralized location—as well as to sto-
chastic gradient descent (a common 
optimization technique in deep learn-
ing). Homomorphic encryption—an-
other PPA on which applications such 
as blind signatures are based—per-
mits computations (including predic-
tive analytics) performed entirely on 
encrypted data without access to the 
decrypted version of the data. Simi-
larly, the field of multiparty computa-
tion (MPC) is devoted to protocols that 
allow multiple parties to participate in 
aggregate computations without re-
vealing their private data.

PPAs can also be described by the 
privacy definitions they satisfy. Stan-
dards such as k-anonymity—which re-
quires an individual’s attributes match 
no less than k other records in a datas-
et—or l-diversity are commonly used to 
evaluate the efficacy of particular PPA 
approaches, though these standards 
have since been shown to be vulnera-
ble to certain re-identification attacks. 
For future-proof, formal guarantees, 
PPAs may be required to conform to 
differential privacy, which bounds the 
influence of any individual’s data on 
output statistics. These standards are 
often achieved using the methods in 
the previous paragraph—for example, 
Google’s abandoned Federated Learn-
ing of Cohorts (FLoC) proposed to 
provide k-anonymity through feder-
ated clustering.8 Differential privacy 
can also be federated to provide local 
differential privacy, where each device 
applies a differentially private mecha-
nism before aggregation.

Growing Applications
While several government organiza-
tions have been using, for a long time, 
an array of traditional statistical dis-
closure limitation methodologies, in 
recent years industry and government 
deployments of novel PPAs have be-
come more common. Perhaps the most 
high-profile example is the U.S. Census 
Bureau’s new Disclosure Avoidance 
System (DAS), which provides differ-
ential privacy guarantees for the 2020 
Decennial Census. A team of bureau 
scientists realized the need for stron-
ger protections after internal research 
suggested that published census data 
could be linked with commercial data 
to re-identify more than 52 million in-

dividuals.3 The bureau had previously 
leveraged differential privacy to release 
additional, previously unavailable data 
through the 2008 On-The-Map tool.

Another prominent example is 
Google’s proposal to replace third-
party cookies with interest-based 
alternatives. Using a federated ap-
proach, Google initially proposed 
to automatically group users into k-
anonymous cohorts based on their 
personal data. More recently, Google 
proposed Topics API, a taxonomized 
approach to grouping users into much 
larger interest categories.8

PPAs are often proposed as a 
means to facilitate data sharing with 
researchers. In partnership with So-
cial Science One, Facebook released 
in 2020 a large, differentially private 
set of URLs shared on the platform 
to aid studies on social media and 
democracy.9 Google, LinkedIn, and 
Microsoft have also released public 
datasets with differential privacy.6 Re-
searchers have also extensively dis-
cussed and debated the use of k-an-
onymity to protect individuals’ health 
data and satisfy the Health Insurance 
Portability and Accountability Act 
(HIPAA) Privacy Rule.10

Less publicized applications also 
exist. Differential privacy has been ap-
plied in deployed systems including 
the Facebook advertising stack: various 
internal SQL systems at Google, Uber, 
Oracle, SAP, and other tech companies; 
and local telemetry in Apple devices.6 
Federated learning is even more wide-
spread, deployed in notable products 
such as Google’s GBoard keyboard.

Growing Dissent
Our Viewpoint is motivated by the ob-
servation that, as PPAs have grown in 

PPAs are promising 
tools that both 
deserve and 
necessitate 
interdisciplinary 
research attention.
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that Google sacrificed user privacy in 
order to preserve advertisers’ ability to 
precisely target consumers.5

Granted, many studies in computer 
science and statistics already analyze 
these trade-offs. However, and key to 
our point, most approach the issue 
from formal perspectives, analyzing 
the trade-offs between abstract privacy 
parameters (for example, epsilon, for 
differential privacy) and abstracted 
loss functions (for example, root mean 
squared error).1 In practice, the util-
ity trade-offs reference concrete, not 
abstract, downstream benefits and 
harms; politicians are concerned that 
their electoral maps will be overhauled 
to the advantage of their opponents, 
and advertisers are concerned that the 
new Topics API will stifle sales.12 Priva-
cy trade-offs, on the other hand, often 
live in the realm of risk. Data stewards 
(as in the case of the census) must as-
sess the chance of a potentially cata-
strophic reconstruction attack, while 
translating complex, probabilistic 
privacy parameters into concrete con-
fidentiality guarantees.11 Stakeholders 
may have practical preferences and 
concerns over these outcomes. How-
ever, the mostly theoretical literature 
makes it difficult to assess the ability 
of PPAs to satisfy all parties. We argue 
there is a need for research emphasiz-
ing empirical methods and participa-
tory approaches involving a diverse 
set of stakeholders focusing on down-
stream outcomes and a more holistic 
set of consequences.

Downstream Implications, and 
Looking at the Bigger Picture
By downstream outcomes, we refer 
to empirical studies of the organiza-
tional and managerial considerations 
behind PPA development, along with 
the impact of their usage on those or-
ganizations in consumer products, in 
research, and in policymaking.

For example, in recent work,15 we 
considered the controversy over the in-
troduction of differential privacy to the 
2020 Census and looked at potential 
but practical (and empirically measur-
able) implications of a deployment 
of differentially private algorithms in 
policymaking. Every year, Census esti-
mates are used to guide the allocation 
of over $1.4 trillion in federal funding, 
including more than $16 billion dollars 

popularity in research circles and as 
their real-world applications prolifer-
ate, their deployment has also been 
met by controversy. For instance, the 
introduction of differential privacy 
into Census Bureau operations has 
been particularly controversial, with 
a number of scholars, politicians, and 
civil rights groups questioning its use. 
Google delayed, and then shelved its 
initial third-party cookie replacement 
plans after privacy advocates protested, 
asserting it would make fingerprinting 
and discriminatory advertising easier.5 

Social Science One publicly disagreed 
with Facebook’s interpretation that 
differential privacy was required for 
the Facebook URLs dataset, arguing 
that merely de-identified or aggre-
gated academic data sharing should 
be enough to satisfy the General Data 
Protection Regulation and Facebook’s 
FTC consent decree.9 And researchers 
have questioned the use of privacy-pre-
serving techniques in high-stakes set-
tings (such as healthcare), fearing the 
utility trade-offs may especially affect 
vulnerable minority groups for whom 
PPAs may not perform as well.

We believe many of the implemen-
tations of PPAs have raised controver-
sy precisely because they engender a 
trade-off between statistical utility and 
data privacy. In the census differential 
privacy example, demographers and 
politicians protested the deleterious 
effects that injected noise might have 
on critical research and political pro-
cesses. In the FLoC example, privacy 
advocates protested the opposite—
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in education funding divided among 
school districts in 2019. The alloca-
tion of that funding relies on a formula 
based on the Census Bureau’s estimate 
of the number of children in poverty 
across the country. We simulated the 
effects of two different kinds of statis-
tical uncertainty on the allocation of 
these Title I grants: the effect of noise 
injected to achieve differential privacy, 
and the effect of existing data error in 
the Census Bureau’s estimates. What 
we found was that, while enforcing dif-
ferential privacy did cause “misalloca-
tion” of funding relative to the official 
allocations, the misallocations caused 
by simulated data error were much larg-
er. In other words, our results indicated 
the decision to augment privacy only 
adds to much larger costs of statistical 
uncertainty in census-guided grant pro-
grams. Weakening privacy protections 
would do little to mitigate these deeper 
disparities—in fact, if respondents are 
not confident in the privacy of their re-
sponses, the usefulness of census data 
will be further reduced, especially for 
harder-to-count groups.

In our study, the addition of differen-
tial privacy exposed deeper flaws in the 
way census-guided funding programs 
distribute the impacts of statistical un-
certainty. But we also found that simple 
policy changes can reduce these im-
pacts, ameliorating the costs of existing 
uncertainty and making the addition of 
stronger privacy protections less daunt-
ing. Our study shows the trade-offs in-
volving PPAs may not be as stark as they 
seem: When PPAs conflict with existing 
data infrastructures, scientists and poli-
cymakers have an opportunity to revisit 
and improve statistical practices. In-
deed, Oberski and Kreuter13 argue that 
the constraints imposed by differential 
privacy (on repeated and granular anal-
ysis) could act as a barrier to p-hacking 
and other dodgy techniques.

We can already see glimpses of more 
robust, privacy-preserving research in 
studies of prominent, differentially pri-
vate datasets. Evans and King7 adapt ex-
isting methods for correcting naturally 
occurring data error to help construct 
valid linear regression estimates and 
descriptive statistics and evaluate their 
corrections on the differentially private 
Facebook URLs Dataset released in 
2020.9 Buntain et al.4 develop a robust 
measure of ideological position on the 

same dataset and conduct an extensive 
empirical study of news platforms and 
audience engagement. In many cases, 
these more robust estimators signifi-
cantly reduce the costs of privacy. For 
example, Agarwal and Singh2 propose 
methods for noise-adjusted causal infer-
ence, recovering the results of a seminal 
study on import competition with dif-
ferentially private 2020 Decennial Cen-
sus data. And PPAs may require other, 
less technical changes with beneficial 
side effects—for example, interviews by 
Sarathy et al.14 with differential privacy 
practitioners suggest a need for better 
data documentation and more context-
specific education for data analysts.

What Is Next for PPAs?
In theory, PPAs can offer a compromise 
between user privacy and statistical 
utility. In practice, the effects of these 
techniques are still to a large extent 
untested. PPAs still pose challenges 
for scientists and policymakers. Work 
on correcting methods to account for 
noise and other privacy protections is 
still ongoing, and not all costs can be 
mitigated by more robust statistical 
practices. For example, studies by Sara-
thy et al.14 and others describe practi-
tioners’ struggles with understanding 
and successfully applying PPA tools. 
And not all applications may be suit-
able for PPAs: some uses may be more 
suited to more traditional legal protec-
tions, and some uses may entrench 
harmful data practices. For example, 
the EFF protested Google’s third-party 
cookie replacement not only because 
it could aid browser fingerprinting, 
but also because any form of targeted 
advertising can be used for exploita-
tion and discrimination.5 On the other 
hand, some uses of PPAs could help 
prevent harms like these: for example, 
PPAs could help facilitate sensitive 
data sharing with auditors, helping 
hold online platforms accountable for 
discrimination and other harms.

The controversies surrounding the 
deployment of PPAs highlight a criti-
cal gap in current research: While the 
interest in PPAs has been growing par-
ticularly among computer scientists 
and statisticians, there is still a pau-
city of applied, empirical research on 
the downstream implications of the 
development and deployment of PPAs 
across a variety of usage cases. Thus, 

there is a need for complementary 
social-science research on the ripples 
those technologies may cast—that is, 
the impacts of these tools. In the past 
couple of years, more applied research 
has started appearing. Our hope is that 
computer and social scientists will in-
creasingly collaborate on research in 
this area to build generalizable knowl-
edge and develop a grounded theory of 
the trade-offs involved, thus highlight-
ing both the benefits as well as the bur-
dens of PPA adoption for various stake-
holders in real-world settings.	
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