
Economics of Information Security

S oftware flaws or vulnerabilities are frequently
the underlying causes of information security
incidents. A recent report documents 2,524 vul-
nerabilities affecting more than 2,000 distinct

products discovered in 2002, an 81.5 percent increase
over 2001.1 The Computer Emergency Response
Team/Coordination Center (CERT/CC) received
more than 4,000 reports of vulnerabilities in 2002, associ-
ated with more than 82,000 incidents involving various
cyberattacks. According to the report, attackers can ex-
ploit approximately 60 percent of documented vulnera-
bilities almost instantly, either because exploit code is
widely available or because no exploit tool is needed.
Anecdotal evidence suggests that losses from such attacks
can run in the millions.

Considerable debate and disagreement exist about
how to disclose vulnerabilities to the public. Our theoret-
ical framework helps identify the key data elements we
need to develop a sensible way of handling vulnerability
disclosure. Furthermore, we’ve analyzed two data sets:
vendor response to disclosure and attack data from hon-
eypots. Our results are useful for understanding how at-
tackers respond to disclosure.

Vulnerability disclosure
The CERT/CC, when informed of a vulnerability,
typically waits for the concerned vendor or vendors to
provide patches or workarounds before issuing public ad-
visories, which provide technical information about a
vulnerability and patch information that users can down-
load to protect their systems against potential exploits.
Unless the vendor response is inordinately delayed,
CERT doesn’t publicly disclose the vulnerability without

a patch. However,
many believe that
full and immediate disclosure is best. Full-disclosure
mailing lists such as Bugtraq started popping up in the late
1990s. Unlike CERT advisories, which provide limited
technical details about a vulnerability, Bugtraq disclosures
frequently contain details of the vulnerabilities, as well as
links to exploit code. In this article, we focus on when in-
formation should be disclosed, rather than on how much,
although obvious parallels exist between the two.

Proponents of full disclosure claim that the threat of in-
stant disclosure increases public awareness, pressures ven-
dors to issue high-quality patches quickly, and improves
software quality over time. But many believe that disclosing
vulnerabilities, especially without a good patch, is danger-
ous. Richard Clarke, US President George W. Bush’s for-
mer special advisor for cyberspace security, criticizes full
disclosure, saying that releasing information before a patch
is released is irresponsible and damaging (www.blackhat.
com/html/bh-usa-02/bh-usa-02speakers.html#Richard
Clarke).2–4 Scott Culp, manager of the Microsoft Security
Response Center, describes full disclosure as “information
anarchy.” The public policy problem is important, but little
extant research exists to guide policy (see the “Literature
review” sidebar).

Framework and model
The outcome of any disclosure policy depends on the re-
sponses of three major sets of participants: software ven-
dors, software users, and white- and blackhat hackers.
Disclosure policies affect each participant differently, so
let’s use our theoretical model to analyze these impacts.5

Figure 1 shows a product being released and used at
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Information security breaches frequently exploit software

flaws or vulnerabilities, causing significant economic losses.

Considerable debate exists about how to disclose such

vulnerabilities. A coherent theoretical framework helps

identify the key data elements needed to develop a sensible

way of handling vulnerability disclosure.
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time 0 (we ignore product diffusion and assume that all
users start using the product at time 0). Because disclosure
policy is mostly irrelevant if a blackhat discovers a vulner-
ability, we focus on a case in which a whitehat discovers
the vulnerability at t0.

Disclosure policies
For simplicity, we treat the disclosure policy as binary; ei-
ther all information is disclosed or none. Hence, a disclo-
sure policy is the choice of a time T, such that during that
time, only the vendor receives vulnerability information.
Once time T elapses, information on the vulnerability is
disclosed (for example, by CERT) to the public, irrespec-
tive of patch availability. An instant disclosure policy
means T = 0, whereas a secrecy policy implies that T = �.
In terms of Figure 1, a disclosure policy T requires that
this vulnerability be disclosed at time T + t0. (We want to
study the socially optimal trade-offs about disclosure tim-
ing. Thus, if the vendor finds the vulnerability, it will act
as if the official disclosure time were infinite. If the at-
tacker finds the vulnerability, there’s no interesting policy
question. Formally, this is as if the official disclosure time
were zero.)

Vendors provide a patch for this vulnerability at a cal-
endar time � + t0, possibly after disclosure. We measure �,
T, and s from t0, the time at which whitehats first discover
the vulnerability. Attackers learn about the vulnerability
at time s + t0 or at time T = t0, whichever is earlier. For
now, unless a patch is available, we assume that attackers
can exploit the vulnerability without any further delay.
The expected user loss is Le(�, T: X), a function of T and

the time window for patching, �. Other factors that
might affect expected loss are captured in X. Users suffer
loss when blackhats discover the vulnerability on their
own or through disclosure before the patch is available.

We define L(t) as the actual cumulative user loss if
users are exposed for a duration t. Intuitively, L(t) should
increase with exposure time t because the number of
blackhats who learn about the vulnerability and the
chances of an exploit tool being developed will increase.
It follows that expected loss Le(�, T ) will critically depend
on when the patch becomes available (� ) and when the
vulnerability is disclosed (T ). Consider the following two
cases: in C1, the patch is released before T; in C2, the
patch is released after T.

In C1, users suffer loss only if attackers find the vul-
nerability before its release. In Figure 1, the attacker finds
the vulnerability at s + t0, and the patch is released at � +
t0. Users are attacked between s + t0 and � + t0. Hence,
user loss is L(� – s). On the other hand, in C2, attackers
can find the vulnerability and exploit it for � – s. Alterna-
tively, if attackers learn about the vulnerability when it’s
disclosed at T, they can exploit it until the patch is made
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Figure 1. The software life cycle. An attacker finds the vulnerability
and t0 + s, and the patch is released at � + t0.

Only a few articles have analyzed economic issues related to

problems in information security. William Arbaugh, John

McHugh, and Bill Fithen provide a vulnerability life cycle and show

that many exploits occur after patches are released.1 Stuart

Schechter argues that encouraging competition among testers to

discover vulnerabilities can improve quality.2 Karthik Kannan and

Rahul Telang show that a vulnerability market operated by a

private firm could be undesirable because a firm would always find

it profitable to disclose vulnerability information without proper

safeguards.3 Ethan Preston and John Lofton provide an overview of

the current state of law and regulation for vulnerability disclosure

and forcefully argue against any restriction on the publication of

such information.4 Eric Rescorla argues that finding a security hole,

let alone disclosing it, is socially wasteful because the probability

that a hacker would find it is very small.5 Lawrence Gordon, Martin

Loeb. and colleagues discuss how the economic issues related to

information sharing in information sharing and analysis centers

(ISACs) are similar to those in trade associations.6 They also

provide a theoretical analysis of how information sharing mediates

the impact of security investment on expected security costs.
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available for � – T.
To capture the uncertainty about when an attacker

will discover a vulnerability, we assume that the time that
an attacker finds the vulnerability (s), conditional on a
whitehat discovering it at t0, is stochastic, with a distribu-
tion F(s: t0). Thus, the probability that an attacker won’t
find it within period T is 1 – F(T:t0). We assume that F(s :
t0) increases with t0 because attackers are more likely to
find the vulnerability as they accumulate experience and
knowledge about the software.

Thus, we can express the expected user loss as

(1)

The expected user loss function can take two possible
forms. The first occurs when the patch is released before
T but after an attacker finds the vulnerability at a time s (s
< �) and exploits it for � – s. The second form applies
when a patch is released after T, and an attacker finds it ei-
ther before T and attacks for � – s or at T when it is dis-
closed and attacks for �  – T.

Given a disclosure policy T, the vendor decides how
to allocate its resources to develop and test the patch. The
vendor’s objective function (modeled here as a cost func-
tion to be minimized) has two terms. The first is the cost
of developing the patch, C(�). All else held constant, the
quicker the patch, the higher the development costs—
that is, C is a decreasing function of �.

The second cost, �, is a proportion of user loss that the
vendor internalizes (through reputation loss or a loss of
future sales). Currently, vendors aren’t legally liable for
user losses arising from product vulnerabilities, but this
could change. When � = 1, the vendor internalizes the
entire loss to users, so the interests of the vendor and soci-
ety at large are perfectly aligned:

V = C (�) + �Le(�, T ). (2)

The social cost is simply the sum of patch-developing cost
and loss to users:

S = C (�) + Le(�, T ). (3)

Model limitations 
and possible extensions
For simplicity, we assume the vendor makes a one-time,
committed decision about when to issue a patch. Addi-

tionally, patching time for our purposes is deterministic,
and we assume the patch’s quality is fixed. Eric Rescorla
has shown that users don’t apply patches immediately
after they’re available,6 so we can extend our frame-
work5 to a case in which not all users install a patch im-
mediately on its release—only a fraction p(x) of users
apply the patch at time x where x > � and p´(x) > 0 and
where the probability of patching depends on the
patch’s quality, which the vendor decides. Other exten-
sions include explicitly allowing users to protect them-
selves without a patch or letting vendors make real-time
decisions (from time to time) about when to develop or
release an already-developed patch in response to envi-
ronmental changes (for example, news that blackhats
have exploited the vulnerability).

However, this model ignores two important aspects of
the disclosure debate. Full disclosure proponents argue
that disclosure pressures vendors to ultimately improve
their software’s quality. Our model deals more with the
ex-post release of patches than ex-ante software quality.
Additionally, disclosure might educate programmers or
network administrators on new classes of bugs and im-
prove the overall security level.

However, the model captures important elements of
the trade-off, such as the cost of rushed patching to ven-
dors C(� ). We can use the model to analyze how disclo-
sure policies affect vendor behavior, and the factors that
condition their responses, such as patching costs, likeli-
hood and severity of user loss, vulnerability characteris-
tics and legal liability (if it were to be in place), and vendor
characteristics (for example, open source versus closed
source). Most important, given the behavior of blackhats
and users, as captured by F(s) and p(x), we can ask two
questions: What is the value of T that maximizes social
welfare (minimizes social loss), and how can a social plan-
ner use T to force the vendor into issuing patches in an
optimal fashion?

Key implications
One implication of our framework is that vendors re-
spond to quicker disclosure with quicker patches. Thus,
instant disclosure would force vendors to issue patches
faster, although this policy is rarely optimal.

If users don’t patch their systems quickly, then the op-
timal policy is to give vendors more time. In an extreme
case, if a large enough fraction of users never patch, then a
secrecy policy is optimal.

If vendors decide to issue a patch on a real-time basis
(rather than making a commitment to patch earlier), the
optimal policy is to not disclose the vulnerability or issue
a patch until a hacker finds it. After this, the vendor can
issue a patch immediately.

For a new or recently released product, a larger disclo-
sure window is useful; because the product isn’t exten-
sively understood, the exploit tools aren’t widely avail-
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able. Moreover, if F(s) (the probability of hackers finding
it conditional on a whitehat having found it) were very
small, as Rescorla argues,7 then the optimal policy is to
never disclose the vulnerability.

As the internalization factor (or, someday, legal liabil-
ity) increases, vendors are more aggressive in patching
their systems. Similarly, the optimal disclosure window
also shrinks.

Empirical studies
We conducted two empirical studies using our model. In
the first, we investigated the time it takes for vendors to
patch a vulnerability in their systems and tested whether
this time systematically differs if the vulnerability is dis-
closed versus if it’s kept secret. In the second study, we ex-
amined the patterns over time of attacks experienced by a
host when the vulnerability is secret, disclosed, or patched.

Vendor response to the disclosure policy
Our framework helps us understand how vendors might
behave under different disclosure policy regimes. In par-
ticular, we found that instant disclosure without a patch
might increase customer loss. If vendors had to internal-
ize some of the costs, they might have incentive to pro-
vide patches early. The exact timing of the patch release
also depends on the patching cost. If this cost were trivial,
we might not see significant differences between the two
policies for some vulnerabilities. Although we didn’t ob-
serve the cost of patching, we did observe the vulnerabil-
ity characteristics and vendor type (public firm, open-
source vendor, vendor size, and so on).

At the Heinz School at Carnegie Mellon University,
we collected the data from CERT/CC and the Bugtraq
mailing list.8 As noted earlier, unless the vendor response
is inordinately delayed, CERT doesn’t publicly disclose
the vulnerability without a patch. On the other hand,
many vulnerabilities are posted without a patch (and
sometimes with the exploit code) on Bugtraq. As a first
approximation, Bugtraq corresponds to instant disclo-
sure, whereas CERT typically gives the vendor at least 45
days to provide a patch.

We collected 504 observations from both sources and
examined how the decision to patch—and when—
changes with the policy, controlling for various vulnera-
bilities and vendor characteristics. The data presents
methodological challenges. For example, in many cases,
whether a given vendor’s products are affected by a cer-
tain vulnerability is listed as “unknown” by CERT. Fur-
ther, the number of vendors CERT lists to be actually or
potentially vulnerable is often larger than the corre-
sponding number in a Bugtraq disclosure. To address
this, we first used a joint sample from CERT and Bug-
traq to estimate the true number of vulnerable vendors
in the unknown category. Then, we estimated a probit
model (commonly used when the dependent variable is

binary) to examine how the probability of vulnerabilities
being patched differs between two policy regimes. In ad-
dition, we used the proportional hazard model (Cox
PHM9) to estimate differences in the speed of patching
between two regimes.

The average patching time was 242 days for CERT (N
= 186) and 390 days for Bugtraq (N = 318). Approxi-
mately 60 percent of vendors whose products were af-
fected by vulnerabilities disclosed exclusively in Bugtraq
patched, whereas the corresponding number is 77 percent
for vulnerabilities disclosed exclusively in CERT. When
we controlled for other factors, we found that both the
probability and the speed of patching were approximately
the same in both regimes. This finding is surprising be-
cause the results don’t support the claim that full disclosure
pushes vendors into developing patches more quickly.
One limit of our research was that we didn’t control for
patch quality. It’s also plausible that vulnerabilities dis-
closed exclusively on Bugtraq could be less significant, in
an economic sense, than those disclosed on CERT. Sub-
ject to this qualification, our results suggest that if benefits
exist for early disclosure, they must lie in letting users pro-
tect themselves without a patch and perhaps in the incen-
tives for vendors to develop more secure products in the
first place. We also found that open-source vendors were
quicker to patch than closed-source vendors and that
more severe vulnerabilities (as per the Common Expo-
sures and Vulnerability [CVE] ICAT database) were
patched faster. More recent vulnerabilities (after the at-
tacks of 9/11) were patched more often and more quickly.

Attacker reactions to disclosure
In the second study, we empirically explored the impact
of vulnerability information disclosure and patch avail-
ability on several attacks seeking to exploit the vulnera-
bility. We collected data mainly from 14 honeypots
running in different locations and operating in different
environments—Linux, Solaris, OpenBSD, and Win-
dows—for several weeks in a year.10 Unlike real net-

works, where distinguishing between an attack and le-
gitimate traffic isn’t always possible, honeynets provide
an easy way to detect attacks because honeypots don’t
have legitimate network traffic.

We created our key variable—the number of attacks
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Our results are also consistent
with other findings that indicate a
significant fraction of users might
not install patches promptly.
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targeting a vulnerability—by matching attack data with
attack traffic signatures obtained from publicly available
sources such as www.whitehats.com and www.snort.
org/cgi-bin/done.cgi. We selected vulnerabilities ran-
domly from the CVE ICAT database of software vulner-
abilities. We classify vulnerabilities as secret (neither
published nor patched—although all secret vulnerabili-
ties were eventually disclosed), published (published but
not patched), or patched (published and patched). A given
vulnerability could go from being secret to published to
patched during the course of the study period.

The data consisted of 2,952 observations during nine
weeks from November 2002 to December 2003 for 328
different vulnerabilities. Of those vulnerabilities, 77
were left unpatched, 160 became public the same day a
patch was released, and 76 were patched afterward. Only
44 vulnerabilities were exploited in our data. We found
that, on average, secret vulnerabilities (N = 24) received
0.32 attacks per host per day, whereas published vulner-
abilities (N = 77) attracted 5.45 attacks per host per day.
Patched vulnerabilities (N = 233) attracted 2.5 attacks
per host per day.

We found that publishing vulnerabilities attracted at-
tacks, which declined with time. Patch releases also at-
tracted attacks initially, which then declined. When aver-
aged over time, the results imply that disclosure results in
more attacks, but patching reduces them. Secret vulnera-
bilities suffered the least number of attacks. It’s tempting
to interpret this as evidence in favor of secrecy, but if a se-
cret vulnerability suffered several attacks, it would quickly
become public, so the average number of attacks for a
vulnerability that remains secret over time must, by defi-
nition, be small. Moreover, the study analyzed observed
attacks rather than economic losses per se; although secret
vulnerabilities are naturally attacked less frequently, such
attacks could result in greater damage. The finding that a
patch release is also associated with a spike in attacks sug-
gests that perhaps a patch itself provides valuable informa-
tion to hackers and that attackers expect that users won’t
patch promptly enough.

O ur empirical results suggest that the evidence support-
ing the case for instant disclosure, namely that it pro-

vides a strong incentive for vendors to develop patches
more quickly, remains weak. Our results are also consistent
with other findings that indicate a significant fraction of
users might not install patches promptly. Furthermore, dis-
closure on Bugtraq sometimes occurs without a patch—
and in some cases, exploit code might even be provided—
so our results don’t support full and instant disclosure as the
optimal policy. Put differently, our results imply that full
and instant disclosure can be socially optimal only if it ei-
ther prompts vendors to develop more secure products or
lets users protect themselves in other ways, including

workarounds or additional perimeter defenses. Both ques-
tions require additional empirical research.

Our discussion raises the fundamental question of
who “owns” vulnerability information. Some authors
have argued for creating “markets for vulnerability.”
Some firms have attempted to create market-based
mechanisms for vulnerability information. Firms such as
iDefense (www.idefense.com) will pay identifiers for
vulnerability information, which they provide exclu-
sively to their clients.

Such arrangements have complex implications for
overall security. Clearly, by providing incentives to find
vulnerability, such firms increase the “supply” of vul-
nerability. Rescorla has argued that the likelihood of
these vulnerabilities being rediscovered is small, so such
incentives are socially wasteful.7 (In terms of the model,
if F(s) is small enough, discovering vulnerabilities is so-
cially wasteful.) However, this mechanism can have
benefits if it spurs whitehats, increasing competition for
blackhats.11 Increasing competition can help keep
blackhats from discovering vulnerabilities before
whitehats, which can be socially beneficial. However,
offsetting this benefit is the possibility that a for-profit
intermediary can publicly release information about the
vulnerability once its own clients are secured, leaving
nonclients defenseless. This increases the benefit of be-
coming a client but reduces overall social welfare. Hav-
ing a not-for-profit intermediary, such as CERT, is
clearly superior,11 indicating that vulnerability disclo-
sure ought to remain in the nonprofit sector and re-
quires public subsidies.

The theoretical framework we discuss highlights the
complex set of issues surrounding how, when, and to
whom vulnerability information should be disclosed.
Our findings are suggestive rather than conclusive and
point to several areas that require additional research. The
framework needs to be enriched and extended to analyze
issues such as interactions between competing vendors.
However, even the rather simple framework highlights
the need for collecting new data types. Although chal-
lenging, the task is feasible, and we’re continuing to study
this issue. 
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