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Abstract. Problem definition: Early research has documented significant growth in ride-
hailing services worldwide and allied benefits. However, growing evidence of their
negative externalities is leading to significant policy scrutiny. Despite demonstrated socioe-
conomic benefits and consumer surplus worth billions of dollars, cities are choosing to
curb these services in a bid to mitigate first order urban mobility problems. Existing studies
on the congestion effects of ride-hailing are limited, report mixed evidence, and exclusively
focus on the United States, where the supply consists primarily of part-time drivers.
Methodology/results:We study how the absence of ride-hailing services affects congestion
levels in three major cities in India, a market where most ride-hailing drivers participate
full time. Using rich real-time traffic and route trajectory data from Google Maps, we show
that in, all three cities, periods of ride-hailing unavailability due to driver strikes see a dis-
cernible drop in travel time. The effects are largest for the most congested regions during
the busiest hours, which see 10.1%–14.8% reduction in travel times. Additionally, we pro-
vide suggestive evidence for some of the mechanisms behind the observed effects, includ-
ing deadheading elimination, substitution with public transit, and opening up of shorter
alternative routes. Managerial implications: These results suggest that despite their paltry
modal share, ride-hailing vehicles are substituting more sustainable means of transport
and are contributing significantly to congestion in the cities studied. The reported effect
sizes quantify the maximum travel time gains that can be expected on curbing them.

Funding: This work was supported by the Srini Raju Center for Information Technology and the Net-
worked Economy at Indian School of Business.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.1158.
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1. Introduction
In recent years, the growth of app-based ride-hailing serv-
ices has visibly transformed the urban transportation
landscape around the world. Banking on technology-
enabled innovations such as dynamic pricing, efficient
matching, and pooling of rides, ride-hailing services have
promised to be an ally in the push toward sustainable
mobility. A large stream of work has documented various
positive socioeconomic effects of these services, such as
the provision of opportunities forflexiblework (Chen et al.
2019), improvement of service quality (Wallsten 2015,
Athey et al. 2018), and reduction of driver moral hazard
(Liu et al. 2021).

Despite these promises and demonstrated benefits,
diverse governments around the world are adopting a
conservative stance on these platforms and are looking to
regulate them for their purported role in worsening urban
congestion. For instance, New York recently became the
first U.S. city to freeze new license registrations for ride-

hailing, whereas ride-hailing congestion pricing plans
have been passed in Seattle, Chicago, and New York City.
These developments have led to a growing interest in
examining the externalities and sustainability issues
related to these services (Benjaafar and Hu 2020, Yu et al.
2020, Benjaafar et al. 2022). Yet, there is limited causal evi-
dence on the relationship between ride-hailing and con-
gestion, driven by paucity of data and identification
challenges. Existing studies report contrasting findings
and exclusively examine effects in the United States. Rec-
ognizing the current regulatory climate, our study exam-
ines the impact of ride-hailing services on congestion in
three major Indian cities, with a particular focus on spatial
and temporal heterogeneity in effects. Specifically, we pro-
vide reliable measures of the maximum travel time gains
to be expected from curbing these services that can be
weighed against allied welfare losses.

Existing research points to countervailing impacts
of ride-hailing services on congestion. One class of
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studies has highlighted that these services can reduce
congestion by (1) improving the utilization of transport
infrastructure through demand pooling (Agatz et al. 2012,
Alonso-Mora et al. 2017), (2) acting as a complement to
public transit systems (Feigon andMurphy 2016,Hall et al.
2018), and (3) reducing private vehicle ownership (Hamp-
shire et al. 2017).1 Backed by early optimism, ride-hailing
services have enjoyed largely unchecked growth, even in
cities that are very strict in regulating incumbent taxi serv-
ices (e.g., New York City). However, recent studies paint
a less sanguine picture by showing that ride-hailing serv-
ices may be (1) adding vacant vehicle miles, commonly
referred to as “deadheading” (Cramer and Krueger 2016,
Schaller 2017, Henao and Marshall 2019), (2) substituting
more efficient means of public transport (Rayle et al. 2016,
Clewlow and Mishra 2017, Lavieri et al. 2018, Babar and
Burtch 2020) and (3) inducing trips that would otherwise
never have been made (Rayle et al. 2016, Clewlow and
Mishra 2017, Tirachini and Gomez-Lobo 2020). This theo-
retical ambiguity renders the estimation of the congestion
impact of ride-hailing an empirical question.

We study how ride-hailing services affect conges-
tion using exogenous service disruptions, using an
identification strategy similar to Anderson (2014). For
three different time intervals in major Indian cities
(Mumbai, New Delhi, and Bangalore), spread over a
period of 1.5 years, drivers of Uber and Ola, the larg-
est ride-hailing platforms in the country, went on a
strike demanding better pay. Based on data availabil-
ity, we use either (1) a difference-in-differences (DD)
approach, by comparing the change in congestion lev-
els in affected cities to either a control city that was
not subject to the strike (for Mumbai), or similar dates
from the next year (for Bangalore), or (2) a regression
discontinuity style pre-post comparison, comparing
the change in congestion during the strike relative to
the prestrike period (for Delhi). We measure conges-
tion using real-time, high-frequency travel time data
for a set of fixed origin-destination pairs from Google
Maps. In all three cities, we find that travel times were
consistently lower during the periods of the strikes. On
average, the reductions were highest for the most con-
gested regions during peak hours, which are likely to
witness maximum ride-hailing activity on a usual day.
These results emphasize that ride-hailing services are
contributing significantly to congestion in the cities
studied and the effect sizes in our analyses quantify
maximum travel time gains that can be expected in the
long run on curbing them. Simple back-of-the-envelope
calculations suggest that the lower congestion during
periods of ride-hailing absence translated to Rs. 113 mil-
lion to 154 million (USD 1.4 to 2 million) per day in
terms of the value of time saved.

Although our data do not allow us to uncover all
the mechanisms underlying the observed congestion
effects, we provide suggestive evidence for the role of

deadheading elimination, public transit substitution,
and opening up of shorter routes. Specifically, we find
congestion reduction to be significantly higher along
airport routes, even during late night hours when
public transit is not available. Given that trips to/
from the airport are less likely to be cancelled or
shifted to nonmotorized modes, this suggests that the
drop in congestion in these routes may have been driven
by the elimination of empty ride-hailing vehicles dead-
heading near the airport. Using a panel of daily station-
level data for ridership in rapid transit (Delhi Metro),
we also find evidence for substitution with public transit
during the period of disruption in the city of Delhi.2

Additionally, we find that ride-hailing induced conges-
tion may have been leading people to take longer routes
that avoided congested street segments. This is a novel
insight that has not been identified previously and sug-
gests the need to be cautious in approaching this ques-
tion using speed-based measures, as is common in the
literature. Studies that are based on speed data are likely
to underestimate the true effect of ride-hailing services
on travel times if they induce people to take longer al-
ternative routes that put a smaller (or no) penalty on
speed.

These results provide the most reliable measures yet
of the causal relationship between ride-hailing and
urban congestion and are especially valuable because
of being based on an important context that is not only
vastly understudied but is also very different in the
organization of these services. The supply of drivers in
the United States, which has almost exclusively been
the focus of existing empirical studies on this topic,
consists primarily of part-time workers (Hall and
Krueger 2018, Chen et al. 2019). In contrast, high own-
ership costs coupled with regulatory barriers have
led most Uber and Ola drivers in India to participate
full time on these platforms (see Karnik (2017) for a
detailed discussion).3 As shown in Benjaafar et al.
(2022), this difference is likely to have implications for
how these services affect congestion. As it becomes
costlier to participate on these platforms, supply tends
to shift primarily toward full-time drivers who operate
empty even when demand is limited and thus increase
deadheading miles. With the caveat that an apples-to-
apples comparison is infeasible, we do find effects that
are higher than those in existing studies (Tarduno
2021) along with indicative evidence of deadheading
in ride-hailing hubs, lending support to the predictions
in Benjaafar et al. (2022).

This paper also contributes to the growing literature
on the societal impacts of sharing economy platforms
more broadly (Burtch et al. 2018, Benjaafar and Hu
2020). With a growing chorus to regulate platforms
such as Craigslist, Airbnb, and Uber (Malhotra and Van
Alstyne 2014), the need to measure the externalities
associated with these services becomes paramount, and

Agarwal, Mani, and Telang: Impact of Ride-Hailing Services on Congestion in India
Manufacturing & Service Operations Management, 2023, vol. 25, no. 3, pp. 862–883, © 2023 INFORMS 863

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

2.
81

.5
] 

on
 1

5 
A

ug
us

t 2
02

3,
 a

t 1
2:

59
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



this paper takes a step in that direction. Platforms such
as Uber and Airbnb are proliferating around the world,
yet we know little about their impact in ascendant
economies. Given that India is the largest market for
Uber outside the United States (Bhatia 2016), sees some
of the worst congestion in the world, and has a com-
plete nonavailability of publicly available traffic data
or travel surveys (such as the National Household
Travel Survey in the United States), this contribution is
nontrivial.

The rest of this paper is organized as follows. We
present a brief literature review in Section 2. In Section 3,
we describe the empirical setting. Section 4 describes the
data, and Section 5 discusses the analyses of congestion
effects separately for each city. In the interest of brevity,
the Bangalore results have been described only briefly in
the main text. A more detailed exposition can be found
in the online appendix. In Section 6, we provide sugges-
tive evidence of deadheading elimination, opening up of
shorter routes, and public transit substitution. Section 7
contains discussions on the observed effect size, con-
cerns related to internal and external validity, and long-
term outcomes. Section 8 concludes with implications
for policy.

2. Related Literature
This paper contributes to two prominent streams of
literature.

2.1. Ride-Hailing and Urban Mobility
Ride-hailing services have revolutionized urban mobi-
lity with various technological innovations that have
attracted significant interest from researchers in opera-
tions management (OM) and related disciples (Benjaafar
and Hu 2021). A large body of work has examined
issues related to dynamic pricing (Cachon et al. 2017,
Bimpikis et al. 2019, Guda and Subramanian 2019, Bai
et al. 2019, Bernstein et al. 2021, Besbes et al. 2021), shar-
ing of rides (Agatz et al. 2012, Alonso-Mora et al. 2017),
and efficient matching of supply and demand (Akbar-
pour et al. 2020, Feng et al. 2021), making ride-hailing
arguably the most studied sharing economy application.

In response to the policy debate surrounding ride-
hailing, a nascent stream of research in OM has
emerged that deals with regulatory and sustainability
issues related to these services. It is this stream of
work that we contribute to most directly. In their sur-
vey of the ride-hailing literature in OM, Benjaafar and
Hu (2020, p. 96) note that “Several large cities have
raised concerns about the impact of growth in ride-
hailing services on congestion and pollution… . This
raises important research questions regarding the extent
to which growth in on-demand services harms or bene-
fits workers, customers, and the environment.” How-
ever, researchers in OM have mostly broached this

topic theoretically, with limited empirical investiga-
tions. Using a stylized model, Yu et al. (2020) show that
in the absence of government intervention, ride-hailing
services can drive out incumbent taxis from the market;
moderate forms of regulation cannot only help the taxi
industry to survive, but also enhance total social wel-
fare. In a work that’s closely related to ours, Benjaafar
et al. (2022) theoretically examine the conditions that are
likely to moderate the relationship between ride-hailing
and congestion. They find that the relationship between
ride-hailing and car-ownership/congestion would
depend on how ride-hailing supply is organized (part-
time/full-time workers). Our results thus add to this lit-
erature by reporting measures of ride-hailing congestion
externality from a setting that is not just vastly different
in terms of culture and geography, but also in the organ-
ization of ride-hailing. This contribution is also relevant
given the growing calls for empirical research in the OM
community (Fisher et al. 2020, Terwiesch et al. 2020).

A large body of interdisciplinary empirical work
has sought to understand the impact of ride-hailing
services on various aspects of urban mobility.4 As
noted in Section 1, several works have highlighted
individual mechanisms (e.g., relationship with public
transit and deadheading) via which ride-hailing may
be affecting mobility, but relatively few have exam-
ined congestion effects directly, and those that do
report contrasting findings (Li et al. 2016, Erhardt et al.
2019, Diao et al. 2021, Tarduno 2021). This is mainly
due to the challenges involved in finding granular
traffic data, in isolating the causal effect of ride-
hailing services in complex transport networks, and in
explaining mechanisms behind observed effects. As
noted in Section 1, these works do not account for
rerouting behavior induced by ride-hailing driven
congestion, which is a novel contribution of this work.

Li et al. (2016) and Diao et al. (2021) leverage the
staggered entry of Uber across Metropolitan areas
in the United States and Metropolitan Statistical Area-
month level congestion measures to find that ride-
hailing vehicles have reduced/increased congestion
in the United States, respectively. As we show later in
the paper, aggregating at the city level itself signifi-
cantly understates the congestion effect of ride-hailing
vehicles, and thus aggregating at an even higher level
may obscure the true impact of these services. Addi-
tionally, the aggregate metrics are likely to obscure
any within-day heterogeneity in effects. Given that
most congestion-relief measures tend to be applied
locally and during peak hours, it is important to reas-
sess this question using granular measures. The causal
identification in these papers is also heavily dependent
on the assumption of entry exogeneity, and the results
may be biased if the entry decisions of these compa-
nies are based on omitted variables that are correlated
with congestion.
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Comparing speed levels in San Francisco in 2016 to a
counterfactual simulated using a traffic prediction
model, Erhardt et al. (2019) find that ride-hailing vehicles
have contributed to increased congestion in the city. The
results of this paper depend heavily on the ability of the
traffic model (calibrated in 2010) to account for all con-
founding changes over a long period time. Given the
complex, intricate, and uncertain nature of evolution of
urban traffic networks, it is worthwhile to revisit this
question in a vastly different context, using a natural
experiment design. This paper also highlights the diffi-
culties involved in maintaining external validity while
approaching this question using granular traffic metrics.
The granular measures used in Erhardt et al. (2019) cir-
cumvent the data limitations of Li et al. (2016) and Diao
et al. (2021), but it is unclear how their results generalize
outside the city studied. The unique setting in our paper,
where we report results from three of the biggest cities in
India, strikes a balance between data granularity and
external validity, providing confidence in the reported
estimates.

Another related work is by Tarduno (2021), who
finds that the exit of Uber and Lyft from Austin in
2016 led to modest congestion reduction in the city.
This work is based on speed data from roadside blue-
tooth sensors. Besides the difference in context and
the magnitude of reported effects, our study improves
on this paper in several ways. First, the traffic data
used in Tarduno (2021) covers a relatively small road
length in the city (~72 km). In comparison, our data
from Mumbai covers about 1,650 km even though
Mumbai is a significantly smaller city. This allows us
to get a more representative measure of ride-hailing’s
effect in the city and lets us examine rich within-city
heterogeneity in effects, which is important because
most congestion-relief measures tend to be applied
locally. Second, our data allows us to also comment
on some of the mechanisms behind the observed
effects such as distance reduction, deadheading elimi-
nation, and public transit substitution. Third, provid-
ing estimates from three different cities enhances the
external validity of our findings. The fact that we find
similar effects for three major Indian cities for periods
of ride-hailing unavailability at different points in
time suggests that our results are likely to replicate
qualitatively for cities that are similar. Finally, Google
Maps travel time estimates are known to be highly
precise (Hanna et al. 2017, Akbar and Duranton 2018,
Kreindler 2018), whereas bluetooth sensor data are
prone to be noisy (e.g., bias due to pedestrians using
bluetooth phones), and their accuracy is yet unknown.

Additionally, all these studies report effects from 2016
or before. In contrast, our analyses are based on data
until the end of 2018, which enhances the relevance of
our results, given the breakneck growth of ride-hailing
services and the recency of the regulatory debate.

2.2. Societal Impacts of Sharing
Economy Platforms

The dramatic growth of sharing economy platforms
such as Uber, Airbnb, and TaskRabbit has significantly
disrupted many industries. A large stream of literature
has examined the strategic interactions on these plat-
forms and their various societal impacts (Fraiberger
and Sundararajan 2017, Benjaafar et al. 2019, Abhishek
et al. 2021, Tian et al. 2021, Agarwal and Sen 2022).

Specific to ride-hailing services, studies have docu-
mented various positive effects such as the provision
of alternatives to low-quality entrepreneurial activity
(Burtch et al. 2018), provision of opportunities for flex-
ible work (Chen et al. 2019), improvement of service
quality (Wallsten 2015, Athey et al. 2018), reduction of
driver moral hazard (Liu et al. 2021), and generation
of significant consumer surplus (Cohen et al. 2016).

Yet, a prominent criticism of these platforms is that
they provide an avenue to engage in “regulatory arbi-
trage” by circumventing regulations that apply to tra-
ditional firms (Malhotra and Van Alstyne 2014). With
increasing anecdotal evidence of the externalities associ-
ated these platforms, there is a growing chorus for the
need to monitor them and to regulate their growth
(Benjaafar and Hu 2020). Major cities in the world are
looking to curb ride-hailing services in a bid to improve
congestion levels. Our study, in providing insights into
the causal relationship between ride-hailing platforms
and congestion, lends critical empirical support to this
literature and seeks to help cities better account for
these platforms in their policies. Additionally, there is a
notable dearth of evidence from developing economies
in the literature on platform impacts, and we hope to
stimulate research in this direction.

3. Empirical Context
Ola and Uber dominate the Indian ride-hailing mar-
ket, together accounting for 95% market share (Bhatta-
charya 2018). Since their inception in the country in
2010 and 2013, respectively, both platforms have seen
exponential growth. In an effort to increase supply
and leverage network effects, Uber and Ola offered
lucrative financial incentives to bring drivers on board.
Early drivers reported making as much as 100,000
rupees a month. As a point of comparison, the average
software engineer in the country makes around 32,000
rupees a month. Driven by prospects of an improved
standard of living, drivers joined the platforms in large
numbers, many of them quitting low-paying jobs and
incurring debt to buy new vehicles (Gong et al. 2017).
Around the latter half of 2016, driver earnings reduced
significantly, as Ola and Uber reduced rates charged to
passengers, as well as bonuses offered to drivers.

Distress from reduced earnings, loan defaults, and
limited access to credit led Ola and Uber drivers to go
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on a strike in New Delhi in February 2017. This was
followed immediately by another strike in Bangalore.
The last reported strike took place in Mumbai in Octo-
ber 2018, the analysis of which constitutes the central
result of our study. We also report results from the
strikes in Delhi and Bangalore, which took place in
February 2017, and find similar effects.

4. Data
We source traffic data using the Distance Matrix
Application Programming Interface provided by Goo-
gle Maps. Google uses a proprietary algorithm that
depends on historical records and live crowdsourced
traffic data to provide real-time travel time predictions
between any origin-destination pair (Figure 1). For
each city, we fetch both the distance and the predicted
travel time for the fastest route between a set of fixed
origin-destination pairs (OD pair or OD, henceforth)
throughout the day for many months.

4.1. OD Selection
The travel time data for Delhi and Bangalore are the
same as the ones used in Kreindler (2016) and Krein-
dler (2018), respectively, and were sourced from the
author. We collected data for Mumbai (Figure 2) and
Pune ourselves and selected OD pairs based on the
same guiding principles, which we describe here.

Ideally, we would have liked to place a large num-
ber of randomly selected endpoints in each city and
choose all permutations of these as OD pairs for travel
time data collection. However, this approach has
some practical difficulties. First, these data are costly
to collect. Because our aim was to collect data over a
large period of time and at a high frequency, we had
to limit the number of OD pairs. Second, randomly
chosen endpoints would very frequently fall in loca-
tions that are not road segments (e.g., a water body,
sanctuary, amusement park).

To circumvent these, we manually chose endpoints,
with a view to getting coverage across the city. For
instance, the city of Mumbai has areas like Dadar, Juhu,
Andheri, Bandra, and so on, and the endpoints were
placed to ensure that we have representation from all of
them. We placed more endpoints in the busier, more
central regions of the city and less in the outskirts. Simi-
larly, we chose more OD pairs between the endpoints in
the busier areas of the city compared with the outskirts
to adequately capture the variations. Although some
endpoints were placed next to important junctions and
bus stops, the exact location for the majority of them
was arbitrary. We also chose fewer ODs in Pune (136)
compared with Mumbai (298) because it is a smaller
city. The number of OD pairs were roughly chosen
based on our research budget. The exact numbers were
arbitrary. After manually choosing OD pairs by draw-
ing line segments through the endpoints, we stopped
when it seemed like we had covered the entire city.

4.2. Validity of Google Maps Estimates
Our measure of congestion is the estimated travel
time (in seconds), defined at the date-time-OD level.
Google Maps computes travel time estimates using
historical records and real-time GPS traces from
smartphone users. The algorithm behind the estimates
is not publicly known, but the estimates are known to
be highly accurate, with billions of users around the
world relying on them for their mobility needs. Akbar
et al. (2018) establish the validity of these measures
for a large number of Indian cities (including some
very small cities) by comparing the estimates to actual
trip data collected using a mobile app. The use of his-
torical records to generate travel time predictions may
raise concerns that the estimates may not accurately
reflect the effect of anomalous events. However, as
described in Akbar et al. (2018) and confirmed in our
analysis, the estimates are very extremely responsive
to ad hoc disruptions. It is also important to note that
failure to reflect sudden disruptions would have only
biased the data against finding an effect during ride-
hailing strikes.

Figure 1. (Color online) Google Maps User Interface

Note. We provide the travel time and distance corresponding to the
fastest route (28minutes and 20.3 km in this case).
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4.3. Defining OD Segments
We expect significant spatial and temporal heteroge-
neity in the effects because ride-hailing drivers tend to
cluster in the busiest regions of a city and during peak
hours (Feigon and Murphy 2016, Clewlow and Mishra
2017, Cooper et al. 2018, Erhardt et al. 2019). In the
absence of trip logs, it is not possible to precisely rank
the ODs according to the usual level of activity of
Uber and Ola vehicles. Instead, we work at the aggre-
gate level, by grouping the ODs in each city into ter-
ciles, based on congestion levels in the prestrike
period (postperiod in the case of Bangalore due to
lack of sufficient preperiod data). Estimated travel
time in itself is not comparable across ODs because a
higher travel time may reflect more congestion or lon-
ger distance between the endpoints. To facilitate com-
parison for the creation of terciles, we normalize each
estimated travel time observation by the free-flow
travel time for the same OD. Following Erhardt et al.
(2019), free-flow travel time is computed at the OD
level by taking its minimum travel time in the entire
data, including holidays and late-night hours. This
normalized measure represents the factor by which
the estimated travel time under live traffic exceeds the

free-flow travel time and is thus comparable across
ODs. Next, we split the ODs in each city into terciles,
based on average normalized travel time between 8
a.m. and 11 p.m., excluding holidays. We refer to the
highest congestion tercile as T3, the middle tercile as
T2, and the lowest tercile as T1. We expect that ODs
in T3 will see the highest impact of ride-hailing serv-
ices, followed by T2 and T1. Within each tercile, we
expect a higher impact for the busier hours of the
day. The T3 effects are likely to be the most policy
relevant, not only because of their having high ride-
hailing activity but also because congestion relief
policies tend to target the busiest areas of a city.
Thus, after listing the average effects in each city, we
study the heterogeneity in impact by OD tercile and
hour, with a particular focus on the T3 ODs. Free-
flow normalization was only done for the creation of
terciles (to enable comparison across ODs). The re-
ported regression estimates simply use the log of
(raw) travel time as the dependent variable, without
the free flow normalization.

Summary statistics for each city along with details
of missing observations and exclusions are provided
in Table 1.

Figure 2. (Color online) Mumbai: Map of OD Pairs

Notes. This figure shows the set of OD pairs in Mumbai for which we collect travel time data from Google Maps. There are 149 origin-destination
combinations, which were queried in both directions, giving 298 unique ODs. The routes are shown as straight lines for ease of representation.
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5. Analysis: Congestion Effects
5.1. Mumbai
Mumbai is one of the most populous cities in the coun-
try, with a population of more than 22 million. Not sur-
prisingly, traffic congestion is a significant scourge of
the city. Figure A1 in the online appendix shows that
the average travel time during weekday evening peak
hours in the sample period was around 2.2 times the
free-flow travel time (translating to an average speed of
less than 9 mph), which is clearly very slow.

Drivers of Ola and Uber went on an indefinite strike
beginning the afternoon of October 22, 2018, citing fall-
ing pay. Because ride-hailing platforms do not treat the
drivers as employees, there are not any formal em-
ployee unions, leading to significant logistical chal-
lenges involved in coordinating a successful protest at
this scale. A section of drivers had met on October 20
and decided to peacefully protest outside the offices of
Uber and Ola on October 22. Although drivers in the
meeting on October 20 were in favor of a strike, it was
decided to chart out the course of action depending on
the proceedings of the protest (Korde 2018). This is an
important detail, as it suggests that anticipatory behav-
ior was unlikely to have been present, at least on a large

scale. An indefinite strike was then called on the after-
noon of October 22, effective immediately5; noncom-
pliers were dealt with force, leading to high compliance.6

The strike ultimately ended on November 2, 2018, after
the transport minister’s intervention (but with a warning
by the drivers that they would resume in the absence of
prompt action), yielding a total of 12 days of strike
period (Mahamulkar and Sen, 2018). The developments
were widely covered on popular and social media, and a
large assortment of social media anecdotes indicate that
traffic was faster during the strike.7 Citing unmet prom-
ises, drivers of Uber and Ola started another instance of
the strike on November 18, lasting 2 days.8

For a fixed set of 298 OD pairs (Figure 2), chosen to
cover the entire city, we collect travel time data from
Google Maps every half hour between 7 a.m. and 11
p.m. and hourly between 11 p.m. and 7 a.m. from Sep-
tember 24 to December 11, 2018. We have a nearly
perfectly balanced panel; less than 0.04% of the possi-
ble observations are missing (driven by glitches such
as API errors in the data collection process).

We report results from a DD specification by com-
paring the change in travel times during the strike in
Mumbai to that in Pune, a neighboring city. To this

Table 1. Summary Statistics

Variable Observations Mean
Standard
deviation Important dates

Missing observations/
exclusions

Panel A: Mumbai (298 ODs)

Strikes: October 22 to November 2, 2018, and
November 18 to 19, 2018

Distance (km) 941,350 5.55 2.29 330 missing in travel time data
Travel time (s) 941,350 991.59 412.48 Travel time data: September 22 to December 11,

2018Strike 941,350 0.15 0.36
Holiday 941,350 0.08 0.26 GPS data: December 4, 2018, to September 13, 2019

Panel B: Pune (136 ODs)

Distance (km) 429,616 5.09 1.99 44 missing in travel time data
Travel time (s) 429,616 766.57 287.91 Travel time data: September 24 to December 11,

2018
Strike 429,616 0.15 0.36
Holiday 429,616 0.08 0.26

Panel C: Delhi (150 ODs)

Distance (km) 4,172,517 6.81 2.43 Strike: February 10 to February 23, 2017 428,283 missing in travel time
data. 10,800 excluded due to
Kalindi Kunj gridlock.

Travel time (s) 4,172,517 916.37 417.48 Travel time data: December 18, 2015 to
February 16, 2017

Strike 4,172,517 0.02 0.12 Metro data: January 1 to March 31, 2016 and
2017

Holiday 4,172,517 0.05 0.22

Panel D: Bangalore (178 ODs)

Distance (km) 4,770,283 2.87 1.35 Strike: February 22 to March 2, 2018 174,018 missing in travel time
data. 2,675 outliers excluded
(mean speed of 4,188 km/hr).

Travel time (s) 4,770,283 436.78 280.50 Travel time data: February 21, 2017, to March
13, 2018

Strike 4,770,283 0.02 0.15
Holiday 4,770,283 0.06 0.24

Notes. For each city, the summary statistics are computed using the entire data available to us, except the exclusions mentioned. For Delhi and
Bangalore, most of the missing observations from the travel time data (99.9% and 98.5%, respectively) happen to be outside the periods which
were used in the main analysis. These were mainly due to code or API errors which broke the script for multiple hours or days.
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end, we also collect travel time data for 136 ODs in
Pune, covering the entire city, for the same period (see
Figure A6 in the online appendix for a map of OD
pairs). We choose Pune as a control because it is the
closest city to Mumbai, is in the same state, observes
the same set of holidays, and thus is likely to have
similar fluctuations in traffic levels. To measure the
average effect of the strike in Mumbai, we estimate
the following DD specification after pooling the Mum-
bai and Pune travel time data, using the log of esti-
mated travel time as the dependent variable.

ln_travel_timeciwth � αcw + φh + ρi + βt + γ(Striket
× Mumbaic) + εciwth (1)

Cities are indexed by c, OD pairs by i, day-of-week
(DOW) by w, date by t, and time of day by h. Strike is
an indicator that is set to one for all days during the
strike period. Mumbai is set to one for all ODs in
Mumbai; α refers to city by DOW fixed effects, which
accounts for the fact that the day-of-week effect is
likely to vary by city; and β operationalizes the paral-
lel trends assumption by capturing daily shocks that
are common to Mumbai and Pune. The effect of inter-
est is captured by γ, which represents the percentage
change in mean travel time across ODs in Mumbai
during the strike, relative to Pune. For the first
instance of the strike, we report results using all obser-
vations from the strike and prestrike periods (Septem-
ber 24 to November 2). Following the suggestion of
Cameron et al. (2011), we report standard errors (SEs)
clustered two-way at the OD and date levels, which
are robust to within-day and within-OD serial correla-
tion. Table 2 shows that on average, travel times
dropped by 3.3% in Mumbai as a result of ride-hailing
service unavailability. To assuage concerns of nonran-
dom OD selection, we estimate this regression after
randomly sampling 50 ODs. We repeat this procedure

by bootstrapping 100 such random samples of 50
ODs in Mumbai. We find that the bootstrap estimates
are roughly in the same ballpark as the reported effect
in Table 2, suggesting that our results are not very
sensitive to the choice of ODs. Figure A7 in the online
appendix plots the distribution of the bootstrap
estimates.

Figure 3 plots ln_travel_time for Mumbai and Pune,
averaged by date across all hours of the day for
ODs in T3. Because travel time across days are not
comparable due to day-of-week effects, we adjust
ln_travel_time by subtracting the mean ln_travel_time
in the respective city for the same day-of-week com-
puted using the entire data available to us, excluding
holidays and strike days. The fluctuations in traffic
levels are due to the occurrence of major festivals in
the vicinity of the strike (Dussehra, day −4; Diwali,
days 16 and 17), which emphasizes the importance of
having a control city to weed out seasonal trends.
Although we see some volatility in travel time due to
these seasonal fluctuations, Pune tracks the Mumbai
trend well, suggesting that it is a good control. The
figure also reveals a large and sustained drop in con-
gestion in Mumbai during the first strike, which is
absent in Pune. It should be noted that the figure
understates the drop because the strike was not in
effect on the morning of the first day (day 0). The end
of the strike coincides with an abrupt increase in con-
gestion in Mumbai. The second strike also led to a
reduction in congestion in Mumbai, providing sup-
porting evidence for our causal claim. Regression
estimates for the second strike yield qualitatively
similar results and are provided in the online appen-
dix (Table A1).

Next, Figure 4 shows the result of estimating the
following event study specification for the first strike.
The point estimates in this figure correspond exactly
to the vertical difference between the Mumbai and
Pune measures in Figure 3 (relative to the base week).
This enables us to test the parallel trends assumption
more formally while revealing the dynamics in the
treatment effect over time.

ln_travel_timecith � φh + ρi + βt +
∑50

k�−28
γk(Mumbaic

× 1[t − e � k]) + εith (2)

OD pairs are indexed by i, date by t, city by c, and
time of day by h; φ, ρ, and β represent hour, OD,
and date fixed effects, respectively. We demean ln_
travel_time by DOW separately for each city because it
is not possible to use city by DOW fixed effects in this
specification due to perfect collinearity with the inter-
action terms. Mumbaii is an indicator that is turned on
if OD i is in Mumbai. The variable e represents the
date of the beginning of the first strike (October 22,

Table 2. Mumbai DD Estimates: All OD Pairs and All
Hours of the Day

Variables ln_travel_time

Strike × Mumbai −0.033***
(0.004)

Constant 6.757***
(0.001)

Fixed effects Date, city × DOW,
OD, hour

Observations 659,244
Adjusted R2 0.910

Notes. This table reports estimates of Equation (1) using data from all
OD pairs and all hours of the day. The sample includes observations
from September 24 to November 2, 2018 (strike and prestrike period).
Holidays have been excluded. Unit of observation is OD × date ×
time. Robust SEs clustered at the OD and date level are in
parentheses.

***p < 0.001; **p < 0.01; *p < 0.05.
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2018). The expression 1[t− e � k] is an indicator that is
set to one if date t is k days from the strike beginning;
t ∈ [e− 28, e+ 50] covers all the days from September
24 to December 11 2018, and γks are the coefficients of
interest. We normalize γ−1 to zero so that all other γks
represent the percentage difference between average
travel time in Mumbai and Pune on day k relative to
the difference on day −1 (the day preceding the strike)
after accounting for DOW effects. The estimates of γks
are shown in Figure 4.

Figure 4 provides clear evidence that the absence of
ride-hailing vehicles led to a significant reduction in
congestion in Mumbai. The beginning of the strike
coincided with a drop in traffic levels, and as soon as
the strike ended, this trend got reversed. There is no
discernible pretreatment trend, suggesting that Pune
is a good control for Mumbai, and a DD specification
can help us isolate the causal effect of interest.

The DD estimates reported in Table 2 take into
account all OD pairs in the city and all hours of the
day, which is likely to mask considerable spatial and
temporal heterogeneity in effects. As outlined earlier,
we expect to see the greatest impact of the strike in the
most congested ODs during peak hours. It is also pos-
sible that the strike may have led to a drop in traffic in
some regions and times and an increase in others. This
could happen, if, for instance, people redistributed

travel patterns in the absence of ride-hailing services
(e.g., leaving to/from work earlier), and if true, can
significantly alter the policy implications. To investi-
gate these, we estimate the strike effect separately by
OD tercile for every hour of the day. Figure 5 plots the
DD estimates from Equation (1) for each of these sub-
groups (we exclude hour fixed effects because each
regression uses data from a specific hour of the day).

Row 1 of Figure 5 plots the main DD estimate (γ) for
the T3 ODs across hours of the day; rows 2 and 3 plot
the same for T2 and T1, respectively. As evident, there
exists significant heterogeneity in the effects, with T3
seeing the largest reduction, followed by T2 and T1,
respectively. Within each OD tercile, the morning and
evening peak hours see the greatest reduction. For ODs
in T3, the effect first appears around 7 a.m. and persists
until 11 p.m., reaching a maximum of around 10% in
the morning and evening hours. A 10% reduction in
travel time means that a trip that would have ordinarily
taken 60 minutes can now be completed in 54 minutes.
The late-night hours see a negligible effect. T2 and T1
follow a similar pattern, with smaller magnitudes. The
T2 ODs see a reduction in travel time by up to 5% and
the T1 ODs see a maximum effect of 4%.

Overall, these results provide granular and reliable
measurement of the maximum possible congestion-
relief benefits of curbing ride-hailing services in Mumbai.

Figure 3. (Color online) Mumbai: Pune Parallel Trends
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Milad (day 30), and Guru Nanak Jayanti (day 32) and have been excluded from the computation of the regression curves.
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Importantly, they also call for the need to be cautious
when measuring the effect of ride-hailing using aggre-
gate metrics. Aggregating at the city level itself signifi-
cantly obscures the effect of ride-hailing (the average
city-wide effect in Table 2 is about one-third the maxi-
mum effect), and thus, it may not be prudent to rely on
macro traffic measures.

5.2. New Delhi
New Delhi provides an ideal context for the assess-
ment of traffic congestion policies. The hourly conges-
tion trends in Delhi (Figure A2 in the online appendix)
shows the poor traffic conditions, which reveal a dis-
tinct lack of off-peak hours during the daytime. This
corroborates public perception and the findings of the
Center for Science and Environment, which reported
that Delhi sees more than 12 hours of “peak hour
traffic” (CSE 2017).

On February 10, 2017, drivers of Uber and Ola went
on a strike in the city, demanding better pay.9 The
strike was called off officially nearly two weeks later
on February 23, although multiple reports suggest
that the strike had lost effectiveness toward the end,
with the last four days seeing business as usual.10 We
obtain travel time data for 150 ODs (shown in Figure A4
in the online appendix) in the city at 20-minute intervals
for the period of December 18, 2015, to February 16,
2017. Unfortunately, we do not have travel time data for

the last few days of the strike and the period after.11 We
also do not have GPS trace data of the recommended
routes for Delhi. On November 14, 2017, there was a
major traffic disruption when a truck broke down at the
Kalindi Kunj bridge, leading to bumper-to-bumper traf-
fic for more than 10 hours.12 Spillover effects were felt in
far reaching areas, and the metro saw a huge spike in
ridership (Figure 10). We exclude this date from the anal-
ysis to avoid spurious effects, leaving us with six days of
data during the strike period.

Unlike Mumbai, the strike in Delhi happened to
occur in a stable period, without official holidays and
other cultural festivals. Thus, we feel more confident
that seasonal effects are unimportant, and we can
recover the impact of the strike by comparing the con-
gestion levels during the disruption to the period just
before it. We estimate the following regression using
data from the strike and the two weeks preceding it
(January 27 to February 16, 2017).

ln_travel_timeiwth � φh + ρi + αw + δxt + γStriket + εiwth

(3)

The variables φ, ρ, and α represent hour, OD, and
DOW fixed effects, respectively. Strike is a dummy
that is set to one for all observations in the strike
period; x represents the number of days relative to the
beginning of the strike (x � 0 for February 10, 2017),
and thus δ is a linear time trend, which controls for

Figure 4. (Color online) Mumbai: Pune Event Study
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any linear trend in travel times, which could have led
to a difference in travel times even in the absence of
the strike. SEs are clustered at the OD and date level.
Table 3 lists the regression results for all OD pairs in
Delhi across all hours of the day, suggesting that the

strike in Delhi saw a drop in congestion by 3.3% on
average, similar to the effect observed in Mumbai.

Given that the strike occurred in a stable period,
without any festivals and holidays, we can be confident
that the results are not driven by seasonal fluctuations

Figure 5. (Color online) Mumbai DD Estimates: Spatial and Temporal Heterogeneity in Effects
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Notes. This figure reports estimates of γ from Equation (1) by OD tercile-hour. The first row plots the effects for T3; the middle and last rows plot
the same for T2 and T1, respectively. The sample includes observations from September 24 to November 2, 2018. Holidays have been excluded.
Bars represent 95% confidence intervals, with standard errors clustered at the OD and date level.
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(Figure 6). Nonetheless, we carry out two additional fal-
sification tests. First, we repeat the estimation using
observations for the same date from the previous year.
If our results are driven by unobserved seasonal events
that repeat each year (such as school holidays, annual
fairs, etc.) then we should see a similar effect in 2016.
Table A2 in the online appendix confirms that there
was no such drop in the previous year. Second, to en-
sure that the drop in congestion during the strike was
not a chance occurrence, we run a random treatment or

shuffle test in the spirit of Burtch et al. (2018) and
Greenwood and Wattal (2017). We randomly select a
set of 100 21-day periods in the preceding one year and
code a pseudo or “placebo” strike on the last week for
each of these to mimic the sample used in the main
analysis. We then estimate regression 3 for each of these
randomly chosen periods and collect the coefficients of
Strike. The results are summarized in Table A3 in the
online appendix, which confirm that the estimated ran-
dom treatment effect is not significantly different from
zero.

Next, we examine the spatial and temporal hetero-
geneity in effects. Consistent with expectations, Figure 7
shows that OD pairs in T3 saw the greatest impact, fol-
lowed by T2 and T1. For T3, the effect appears around 7
a.m. in the morning and persists until 3 a.m. Unlike
Mumbai, the effects during the daytime are at least as
large as during the morning hours. The absence of ride-
hailing led to a decrease in travel times by more than
7% during the day (2 p.m. to 4 p.m.), suggesting that
the erosion of off-peak hours in Delhi can be attributed
to some degree to Uber and Ola vehicles. The effects are
also more pronounced in the evening, unlike Mumbai,
which saw a nearly symmetric effect during the morn-
ing and evening hours. The maximum effect occurs at 9
p.m.: a reduction in travel times by 14.8%. T2 and T1
follow a similar pattern, but with smaller magnitudes
(maximum reduction of 9.3% and 6.6%, respectively)

Table 3. Delhi Estimates: All OD Pairs and All Hours of
the Day

Variables ln_travel_time

x −0.000
(0.001)

Strike −0.033***
(0.007)

Constant 6.710***
(0.005)

Fixed effects DOW, OD, hour
Observations 215,486
Adjusted R2 0.896

Notes. This table reports estimates of Equation (3) using data from all
OD pairs and all hours of the day. The sample is restricted to January
27 to February 16, 2017. The day of Kalindi Kunj Gridlock (February
14, 2017) has been excluded. Unit of observation is OD × date × time.
Robust SE clustered at OD and, date level is in parentheses.

***p < 0.001; **p < 0.01; *p < 0.05.

Figure 6. (Color online) Delhi 2017 Congestion Trends
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from the computation of the regression curve.
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and with the exception that there are peaks in the morn-
ing and evening and no impact late in the night.

5.3. Bangalore
The analysis and the results for Bangalore closely par-
allel those of Mumbai. In the interest of brevity, the
details of the setting, analysis, and results for this city
are provided in the online appendix.

6. Suggestive Mechanisms
In this section, we provide indicative evidence of
potential mechanisms underlying the observed reduc-
tion in travel times after the removal of ride-hailing
services. These mechanisms include elimination of
deadheading, opening up of shorter routes between
points, and substitution of displaced ride-hailing trips
with high occupancy public transit.

6.1. Effect in the Airport Region: Possible Role of
Deadheading

A reduction in congestion due to ride-hailing absence
can be attributed to a combination of dead-heading
removal, modal substitution with high occupancy
transit/nonmotorized modes, and trip cancellations.
According to the framework of Benjaafar et al. (2022),
in a regime with high ownership cost (such as India),
ride-hailing supply will be provided primarily by full-
time participants, which is likely to add significantly
to deadheading congestion. To provide suggestive
evidence for deadheading, we analyze traffic close to
the Mumbai airport, where we can rule out the other
mechanisms with weak assumptions. We begin with
the observation that most people would likely not
stop flying to and from the city just because ride-
hailing services are not operational. Furthermore, it is
reasonable to assume that airport trips would not
move to nonmotorized modes due to the unavailabil-
ity of ride-hailing services.13 However, the degree of
substitution of ride-hailing with public transit during
certain time periods such as late night hours is infeasi-
ble. In such case, significant reduction in congestion
during these time periods (when public transit serv-
ices are not available) would suggest that at least as
far as the airport routes are concerned, congestion
reduction may be driven by deadheading elimination
and that, in the absence of ride-hailing services, peo-
ple redistributed travel using other modes that re-
duced congestion levels.

A challenge with the travel time data from Google
Maps’ Distance Matrix API is that we cannot observe
the exact route that Google recommends for an OD
pair, although we can observe the distance and esti-
mated travel time. Thus, it is difficult to ascertain if an
OD pair’s recommended route(s) passes close to a

specific point of interest, in this case, the city airport.
Simply proxying for the route by the straight line join-
ing the endpoints is likely to be misleading, something
that we confirm in the data. To circumvent this prob-
lem, we supplement our analysis with an additional
round of data collection, which allows us to disambig-
uate the entire GPS trajectory of the recommended
routes in the originally collected travel time data with
a high degree of confidence. Specifically, for the same
298 OD pairs in Mumbai, we query Google Maps
Directions API once every 20 hours, from December 4,
2018, to September 13, 2019. In each query, we fetch
the distance and the complete GPS trajectory of the
fastest three routes per Google’s estimates. Over a
period of many months, this gives us a pool of unique
routes for each OD pair, collected across different
hours of the day. We then match the observations in
the travel time data to the route in this pool that corre-
sponds to the same OD and distance (up to the third
decimal place, with a tolerance of 60.015 km). The
assumption underlying this exercise is that for a given
OD, if the recommended routes by Google Maps have
the same (or very similar) distance even in two differ-
ent time periods, the routes themselves must be the
same. In this way, we can assign a route to 91% of the
observations in the Mumbai travel time data. With this
information, we can classify an OD as an “Airport
OD” if its recommended route(s) is expected to pass
within 200 meters of the airport.14 More details and
justification for choices related to the route disambigu-
ation procedure and OD classification can be found in
the online appendix.

We use these travel time data from Mumbai for
each hour of the day to test the impact of the strike on
the airport ODs. Specifically, we estimate the follow-
ing regression.

ln_travel_timeiwt � ρi + αt + ψ(Striket × air_ODi) + εiwt

(4)

OD pairs are indexed by i, date by t, and day of week
by w; air_OD � 1 identifies ODs whose route(s) can be
expected to pass very close to the airport; ψ gives the
effect of interest for the airport ODs, capturing the
percentage change in travel times for the airport ODs
during the strike, relative to the other (nonairport)
ODs in the same city; and ρ and α represent OD and
date fixed effects, respectively. We do not include
hour fixed effects because we are reporting results for
every hour of the day. Figure 8 plots the main esti-
mates from Equation (4) by hour, using observations
from the strike and prestrike periods, excluding
holidays.

There are two main takeaways from this figure. First,
the airport ODs see a significantly larger congestion
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reduction than the other ODs, as confirmed by the neg-
ative coefficient estimates. The magnitude of the incre-
mental effect is significantly large (an additional
reduction in travel time of up to 13.6 percentage points

in the morning hours). Second, congestion in the airport
area dropped significantly even in the late night and
very early morning hours, providing suggestive evi-
dence for the role of deadheading elimination in the

Figure 7. (Color online) Delhi Estimates: Spatial and Temporal Heterogeneity in Effects
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Notes. This figure reports estimates of δ from Equation (3) by OD tercile-hour. The first row plots the effects for T3; the middle and last row plot
the same for T2 and T1, respectively. The sample includes observations from January 27 to February 16, 2017. February 14 (Kalindi Kunj gridlock)
has been excluded. Bars represent 95% confidence intervals, with standard errors clustered at the OD and date level.
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observed effects, based on the assumptions outlined
previously.

These results of airport traffic provide support for
the predictions of Benjaafar et al. (2022) and suggest
that an unregulated operator may induce a higher
level of ride-hailing vehicles than is socially efficient.
Besides suggesting the potential need for airport-
specific regulatory interventions, these results suggest

that some of the congestion caused by ride-hailing
vehicles may be due to deadheading that does not
generate any surplus. Interventions that reduce dead-
heading can thus bring down congestion without
adversely affecting welfare. Additionally, these results
suggest that ride-hailing drivers tend to cluster in the
busiest regions of the city, providing some scope for
these platforms to self-regulate and manage supply
more efficiently. Guda and Subramanian (2019) pro-
vide an example of how a ride-hailing platform can
leverage information interventions along with surge
pricing to manage supply.

6.2. Availability of Shorter Routes
Given the salience of the airport region and the large
effects that we find, we extend our analyses to offer
more granular insights. For each of the five airport ODs,
we trace out the path of the recommended routes before
and during the strike period. We find that before the
strike, Google Maps recommended longer routes for
these five ODs that avoided the airport road. During
the strike, the road in front of the airport became
clearer, because of which Google Maps was able to rec-
ommend a shorter route (Figure 9 provides an illustra-
tive example; similar diagrams for the other four ODs
are presented in Figure A16 in the online appendix).

Figure 9 leads us, therefore, to the insight that the
absence of ride-hailing services may have opened up
shorter routes between points instead of just reducing

Figure 8. (Color online) Mumbai Strike Estimates: Incremen-
tal Effect for Airport ODs
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Notes. This figure reports estimates of ψ from Equation (1) by hour.
The sample includes observations from September 24 to November 2,
2018. Holidays have been excluded. Bars represent 95% confidence
intervals, with SEs clustered at the OD and date level.

Figure 9. (Color online) Comparison of Routes Before and During the Strike for an Airport OD

(a) (b)

Notes. (a) Routes recommended before the strike. (b) Routes recommended during the strike. The southernmost marker is the origin and the
northernmost one is the destination. The middle one is the airport. In each figure, the opacity of the route is proportional to the percentage of
times the route was recommended in the respective period. Before the strike (when ride-hailing vehicles were available), Google Maps recom-
mended the route displayed in (a) almost all the time. During the strike, mainly two routes were recommended as shown in (b), with the shorter
route passing in front of the airport being recommended majority of the time. Figure A16 in the online appendix provides similar diagrams for
the other four airport ODs.
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travel time along the same routes. Conversely, the
presence of ride-hailing vehicles may have been induc-
ing people to take longer routes that avoided con-
gested segments. We investigate this more formally in
Table 4, which shows that for the OD pairs that we
consider, the distance of the fastest route reduced by
0.7% on average. The effect is driven by T3 and T2
ODs, which see a distance reduction of 1.6% and 0.5%,
respectively. Thus, when considering the externalities
of ride-hailing on urban mobility, it is important to
account for costs in terms of additional distance that
people may be choosing to travel to avoid congested
streets in the center of the city and the associated costs
such as pollution and fuel use. Additionally, this result
suggests that studies that are based on speed data are
likely to understate the effect of ride-hailing services
on congestion if people substitute longer routes that
put a smaller (or no) penalty on speed.

Our measure of distance pertains to the suggested
(fastest) route by Google Maps. Whether people respond
to a congested road segment by choosing a longer route
depends onvarious factors such as themode of transport,
the landscape of the road network, and people’s prefer-
ence for optimizing travel time versus distance. In many
cases, alternate routes may not even exist. We hope that
future researchwill explore these issues inmore detail.

6.3. Modal Substitution with Public Transit
One of the mechanisms that may lead to a reduction
in congestion levels in the absence of ride-hailing
services may be mode substitution with sustainable
transit options (Babar and Burtch 2020). Here, we ana-
lyze ridership data from the Delhi Metro, the largest
subway system in the country, to discern whether
commuters in Delhi shifted to high-occupancy public
transit in the absence of ride-hailing services.

To evaluate substitution patterns, we obtain daily
station-level ridership data from Delhi Metro for the
time periods of January 1 to March 31, 2016 and 2017.
The Delhi metro is said to be the “lifeline of the city,”

with a daily ridership of around 2.4 million (com-
puted using the data used in this study). It is the larg-
est and busiest subway system in the country, with an
average trip length of 20 km (Goel and Tiwari 2016).
We have data on daily ridership for all the stations in
the city. The data are in the form of passenger entry
counts in each origin station; we know how many
people boarded Delhi Metro on a given date from
each station, but we do not observe counts at the OD
pair level.

To plot the trends in daily metro ridership, we first
collapse the station × date-level data to date level by
computing the total ridership across stations for each
date and then demean the total ridership numbers by
DOW. Figure 10 plots the DOW-adjusted daily rider-
ship for the period of January 27, 2016, to March 7,
2016 and 2017. The figure provides evidence for an
increase in metro ridership during the period of ride-
hailing unavailability, the effects of which are pro-
nounced during the first week. We also see a sharp
drop at the end of the disruption, suggesting that
those who had substituted to the metro went back to
ride-hailing when they became available. We report
DD estimates by comparing the difference in average
daily ridership during the strike and the preceding
two weeks in 2017 to the same difference the year
before. Because compliance with the strike was lower
in the last few days, we will be understating the
effects by considering the entire strike period.

Table 5 presents DD estimates using the log of daily
station-level ridership as the dependent variable. We
exclude February 14, 2017, because the abnormally
high ridership on that day is likely to be significantly
confounded by the Kalindi Kunj gridlock. The strike
led to an average increase in daily ridership per sta-
tion of 2.4%, translating to an increase in total daily
ridership across all stations by 58,166, which is a conser-
vative estimate due to the reasons outlined previously.
Our analysis corroborates various media anecdotes,
which talk about an increase in metro ridership during

Table 4. Mumbai Effect on Optimal Distance

Variables

ln_distance

All ODs T3 ODs T2 ODs T1 ODs

Strike −0.007*** −0.016*** −0.005*** 0.001
(0.002) (0.004) (0.001) (0.002)

Constant 8.556*** 8.409*** 8.577*** 8.680***
(0.001) (0.003) (0.002) (0.002)

Fixed effects DOW, OD, hour DOW, OD, hour DOW, OD, hour DOW, OD, hour
Observations 452,660 150,380 150,381 150,899
Adjusted R2 0.979 0.964 0.976 0.989

Notes. This table reports estimates using Mumbai data from September 24 to November 2, 2018 (strike and prestrike period) for all hours of the
day. Holidays have been excluded. The DV is ln(distance) of the fastest route at the OD × date × time level. Robust SEs clustered at OD and date
level are in parentheses.

***p < 0.001; **p < 0.01; *p < 0.05.
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the disruption.15 These articles suggest that not only the
metro but taxis, buses, and even auto-rickshaws
absorbed the spike in demand in the absence of ride-
hailing services. Although the percentage increase in
total metro ridership during the strike was small (2.4%),
we are more interested in the proportion of ride-hailing

demand that shifted to the metro. Details of this analy-
sis are provided in Section 7.3.

To examine the heterogeneity in effects across sta-
tions, we compute the DD effect reported in Table 5
individually for each station. Details of this analysis
are provided in the online appendix. To summarize,
we observe that most stations saw an increase in rider-
ship, whereas some stations saw a decrease as well.
The stations in the heart of the city, those near railway
stations, and the terminal stations of each metro line
saw a significant increase in ridership.

The analysis presented in this section provides evi-
dence that, in the absence of ride-hailing services, many
commuters shifted to the metro transit, lending validity
to the concerns that ride-hailing may be substituting
more efficient means of public transport. Another impor-
tant takeaway is that even during a sudden, short-term
absence of ride-hailing services, a large proportion of the
riders found alternative modes of transport, which pro-
vides evidence against large-scale trip cancellations dur-
ing the disruption and related welfare losses.

7. Discussion
7.1. Effect Size
How large was the magnitude of travel time savings
due to lower congestion during the periods of ride-
hailing unavailability? As a useful benchmark, we
compare the strike effect in Delhi to the “Odd-Even”

Figure 10. (Color online) Delhi: DailyMetro Ridership
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Notes. This figure plots the daily total metro ridership in Delhi (demeaned to remove DOW effects) for the period from January 27 to March 7,
2017 and 2016. The circles correspond to actual levels on each day. Curves correspond to different kernel regressions (Gaussian kernel, bw 1.2)
computed for days before, during, and after the strike dates in each year. The holiday of Shiv Ratri (February 24 2017; day 14) has been excluded
to preserve the scale. The day of the Kalindi Kunj gridlock (February 14, 2017) has beenmarkedwith a diamond and excluded from the computa-
tion of the regression curve.

Table 5. Metro Ridership: Station Level Ridership DD
Estimates

Variables ln_ridership

Y2017 0.063***
(0.008)

Strike 0.005
(0.005)

Y2017 × Strike 0.024***
(0.005)

Constant 9.476***
(0.005)

Fixed effects Station, DOW
Observations 7,150
Adjusted R2 0.968
Mean station-level daily ridership 18,643

Notes. This table reports DD estimates for station-level metro
ridership. The dependent variable is total ridership at the station ×
date level. Sample includes all days between January 27 and
February 23, 2016 and 2017, except February 14,, 2017 (Kalindi Kunj
gridlock). The mean station-level daily ridership was computed
using the prestrike period in 2017. SEs are clustered at the station
level.

***p < 0.001; **p < 0.01; *p < 0.05.
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experiment. This was a stop-gap traffic rationing experi-
ment by the Delhi government in response to increasing
pollution and congestion, in which large scale driving
restrictions were imposed based on the parity of vehicle
number plates (Kreindler 2016). On odd numbered
days, private vehicles whose last digit of the registration
number were even were barred from the roads between
8 a.m. and 8 p.m. Private vehicles with odd digits were
similarly restricted on “even” days. The first instance of
Odd-Even ran from January 1 to 15, 2016, between 8
a.m. and 8 p.m. on weekdays. On average, travel times
reduced by 5.3% during this period in the city. In com-
parison, the strike in Delhi led to a drop in travel times
by 4.1% for the same hours of the day, which is 77% of
the odd-even effect. The fact that the strike had such a
large impact relative to the odd-even policy is remark-
able. The odd-even restrictions were applicable to a
much larger number of vehicles (although public trans-
port and ride-hailing vehicles were exempt), suggesting
that the marginal contribution of a ride-hailing vehicle
to congestion is much more than that of an ordinary
vehicle.

7.2. Cost of Congestion
How large was the value of time saved due to lower
congestion during the periods of ride-hailing unavail-
ability? Valuing costs of congestion is a difficult exercise,
more so in the Indian context, where transportation data
are not easily available. To provide some approximate
estimates, we source data on total trips, average occu-
pancy, trip length, and value of time for different modes
in Delhi from Davis et al. (2017). Simple back-of-the-
envelope calculations suggest that the lower congestion
during the period of ride-hailing unavailability trans-
lates to a value of Rs. 113 million to 154 million (USD 1.4
to 2 million) per day. Policymakers can weigh these
congestion relief benefits against potential welfare losses
to arrive at policy decisions. The inputs used for this
exercise as well as the detailed calculations have been
listed in the online appendix.

7.3. Internal Validity
Here we discuss possible challenges to internal valid-
ity of our results and responses thereof.

Google Maps speed estimates are computed using
historical data and real-time information from devices
using the application. The strike led to a large set of
regular users of these applications to go offline, lead-
ing to concerns that the estimates may be biased
because Google Maps may not have sufficient real-
time information to compute precise estimates. In
response, we note that prior work has used similar
data from cities as small as Varanasi to reliably com-
pute speed estimates (Akbar et al. 2018). Given that
Delhi’s population is more than 15 times that of Vara-
nasi, it is unlikely that the absence of ride-hailing

vehicles would have any effect on the accuracy of the
estimates. Nevertheless, if Google Maps did not have
sufficient real-time information, the estimates would
give greater weight to historical records, thus biasing
us against finding any effect during the strike.

Furthermore, any experimental design depends
critically on the assumption of no confounding effects.
In our setting, it would be unrealistic to claim that the
different strike periods are completely identical to the
control periods even after accounting for seasonal
trends using a control city or period. For transport
networks as complex as the cities studied, numerous
disturbances may arise, as evident from the various
holidays and one-off events pointed out in the analy-
sis. To ensure robustness against these, we run a thor-
ough check of news articles for the period of study in
each city. For any unaccounted disturbance to still be
a concern, it would have to be large enough to affect
traffic in a significant portion of the city and yet not
feature in the popular media, the chances of which are
extremely low. Additionally, the validity of Google
Maps estimates has been established in prior research
(Hanna et al. 2017, Akbar and Duranton 2018, Krein-
dler 2018), suggesting that measurement error should
be minimal. Nonetheless, unaccounted for disturban-
ces and measurement error will only be a concern if
they are systematically different before and during
the strike period and occur in a way that is correlated
with ride-hailing activity to be able to explain the het-
erogeneity results.

Another concern is that the reduction in congestion
during the strikes could simply have been a conse-
quence of the cities coming to a halt due to heavy reli-
ance on ride-hailing. We provide suggestive evidence
that mitigates this concern.

First, Uber and Ola comprise an extremely small part
of the transport modal share in the cities studied. The
ride-hailing industry as a whole completed 142 million
rides in the fourth quarter of 2016 in the country.16

Assuming a 95% market share for Uber and Ola
(Bhattacharya 2018), 1.3 passengers per ride (Henao and
Marshall 2019), and attribution of 15%–20% of these
rides to the city of Delhi,17 we estimate about 285,000–
381,000 passenger-rides per day in the city for these two
ride-hailing platforms. This is about 10%–14% of the
daily metro ridership in the city, which, in turn, com-
prises 3% of the overall modal share.18 The analysis of
substitution patterns led to a conservative estimate of an
increase in average daily metro ridership of close to
58,000 during the strike, which is a sizable share of the
usual Uber and Ola ridership. Given that the bulk of the
demand was reported to have been redistributed to
buses, traditional taxis, auto-rickshaws, and even private
vehicles, it is unlikely that the city came to a standstill
due to the absence of ride-hailing services. Although we
do not observe substitution patterns in Mumbai and
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Bangalore, it is reasonable to expect similar effects in
these cities that have well-developed transport infra-
structure and similarly small modal share for ride-
hailing services.

7.4. Long-Term Effects
Our analysis constitutes an evaluation of short-run
effects of ride-hailing disruption. A limitation of our
work is that we do not study long-run effects, or in
other words, we cannot conclusively answer what
would happen if Uber and Ola vehicles are perma-
nently restricted. In the long run, several adjustments
are possible that could influence travel demand in a
way that is not possible in the short run. For instance,
people could move closer to work, companies could
relocate to more transit-friendly areas and/or change
work timings, or the government could improve
transit connectivity. It is difficult to anticipate what
kind of responses these could engender, although the
relatively small modal share for ride-hailing services,
combined with the fact that these services are still rel-
atively new, make it unlikely that the effects stated
previously would be very pronounced.

It is also possible that those who had turned to public
transit, nonmotorizedmodes, or had cancelled their trips
during the strikes decide to purchase a private vehicle in
the long run, attenuating the observed short-run con-
gestion reduction.Whether and the extent towhich these
segments end up purchasing private vehicles over a
longer-term absence of ride-hailing remains an empirical
question. If these behavioral shifts do take place, then
our short-run estimates will serve as upper bounds of
the long-term effects. In otherwords, the observed effects
are the maximum congestion relief that cities can expect
on curbing Uber andOla. Cities canweigh these benefits
against the potential welfare losses to arrive at policy
decisions. If the maximum possible congestion relief
is itself not sufficient to negate the benefits of these serv-
ices, then a more elaborate evaluation may not even be
necessary.

8. Policy Implications and Conclusion
Numerous studies have highlighted various socio-
economic benefits associated with ride-hailing serv-
ices. However, cities are still choosing to curb them to
move toward more sustainable transportation goals.
Our study, in providing insights into the congestion
effects of ride-hailing platforms and suggestive mech-
anisms underlying these impacts, seeks to inform
the growing OM literature on ride-hailing and sus-
tainability while helping cities better account for
the externalities of these platforms in their policies
and planning processes. As platforms like Uber and
Airbnb proliferate around the world, we hope that

this paper stimulates research on the impact of these
services in ascendant economies.

We find a significant reduction in travel times fol-
lowing the unavailability of ride-hailing services in
three major Indian cities, the effects being largest for
the most congested regions during peak hours. These
results inform the ongoing policy debate and suggest
that, despite their paltry modal share, Uber and Ola
vehicles are contributing significantly to congestion.
Our results plainly suggest that there are more ride-
hailing vehicles operating in these cities than is socially
efficient. With the caveat that policy prescriptions
must carefully weigh the costs and benefits, this indi-
cates that interventions that reduce ride-hailing supply
(e.g., vehicle caps) may be beneficial. The deadheading
related findings suggest that it may be possible to
reduce supply in a way that loss of welfare is mini-
mized. Should these services be curbed, our reported
estimates can be interpreted as the best possible con-
gestion reduction that is possible. Specific policy pre-
scriptions require a comprehensive welfare evaluation
of these services, which is a promising area of future
research. Simple back of the envelop calculations
suggest that the lower congestion during periods of
ride-hailing absence translated to Rs. 113 million to
154 million (USD 1.4 to 2 million) per day in terms of
the value of time saved.

Our findings also provide empirical support for the
results of Benjaafar et al. (2022) on the role of high
ownership costs in moderating the congestion effect
of ride-hailing. Although an apples-to-apples compar-
ison is infeasible, we find effect sizes that are higher
than those reported in other studies based in the
United States. High costs of participation coupled
with regulatory barriers have induced most Uber and
Ola drivers to participate full time on these platforms
in India. Although the regulatory barriers help meet
one set of policy goals (passenger safety, less polluting
vehicles), they impose another set of significant costs
by inducing drivers to operate full time, thus increas-
ing deadheading miles. Empirically exploring the role
of ride-hailing regulations and the associated costs in
moderating the supply of ride-hailing drivers (full
time/part time) and its downstream effect on conges-
tion is an important topic that deserves additional
empirical investigation.

The heterogeneity results combined with the airport-
related findings suggest that ride-hailing drivers tend to
flock in the busiest regions of the city. This provides
some scope for platform self-regulation, which has been
frequently discussed as a way to avoid the pitfalls asso-
ciated with sharing economy platforms (Malhotra and
Van Alstyne 2014, Sundararajan 2014). Given that man-
agement of supply is a core aspect of these platforms,
they can consider leveraging informational interven-
tions along with innovations such as surge pricing to
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ease out supply from these congested areas (Guda and
Subramanian 2019).

The results related to the Delhi metro suggest that
ride-hailing may be competing for public transit
demand, confirming sustainability-related concerns
associated with these services. One possible policy
response to this can be to make the metro more attrac-
tive, for instance, by adding routes or reducing fares.

A limitation of our work is that we are unable to
comment on the effect of curbing ride-hailing services
on overall welfare, of which congestion reduction
would be one component. Because we do not observe
a continuous measure of ride-hailing supply over
space and time, we are unable to compute the mar-
ginal congestion of a ride-hailing vehicle. Ride-hailing
trip data will be essential for such an exercise. Other
than an extension by context, an overall welfare evalu-
ation and a longer-term evaluation, these and related
issues can be fruitful avenues for future research.
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Endnotes
1 Another possible mechanism by which ride-hailing services may
reduce congestion is by freeing up parking space for traffic flow. This
is unlikely to be relevant to India, where the demand for parking space
far exceeds the supply (https://bit.ly/2LPe6Wv). Therefore, even if
ride-hailing services were to reduce parking demand, the latent unmet
demand is too high, because of which it is highly unlikely that parking
space usage will reduce. However, this is a clear possibility in other
contexts with better parking infrastructure and lower demand.
2 We do not have ridership data for alternate modes of transport in
Mumbai and Bangalore.
3 Besides the inherently high car ownership costs in the country (car
ownership rate in India is about 2% compared with 84% in the
United States), ride-hailing regulations require participants on these
platforms to acquire a commercially registered vehicle, a commer-
cial driving license, additional insurance, and a green fuel kit. The
vehicles also need to permanently display yellow-colored number
plates, which announce them as being for-hire vehicles.
4 See Tirachini (2020) andWang and Yang (2019) for comprehensive
reviews.
5 See https://www.thehindu.com/news/cities/mumbai/ola-uber-
drivers-off-the-road-over-base-fare-hike/article25291267.ece.
6 See https://www.economist.com/business/2018/11/03/mumbai-
unions-force-uber-and-ola-into-a-corner.

7 See https://www.indiatoday.in/business/story/mumbai-commuter-
woes-continue-ola-uber-strike-enters-day-3-1374202-2018-10-24.
8 See https://www.thequint.com/news/india/ola-uber-resume-strike-
in-mumbai.
9 See https://www.outlookindia.com/website/story/commuters-hit-
as-ola-uber-cab-drivers-go-on-strike-in-delhi-ncr/297887.
10 See https://gadgets.ndtv.com/apps/news/uber-ola-drivers-strike-
in-delhi-ncr-loses-steam-as-availability-improves-1661294, https://
economictimes.indiatimes.com/small-biz/startups/ola-uber-drivers-
call-off-strike/articleshow/57315542.cms.
11 This is the same data that were used in Kreindler (2016). It is not
possible to collect data from Google Maps retroactively.
12 See https://www.hindustantimes.com/delhi/delhi-massive-traffic-
jam-for-over-10-hours-at-kalindi-kunj-as-truck-breaks-down/story-
cx6NEQtrIXJTq0XKFYIItO.html.
13 The caveat is that the airport roads may also be used to make
some non-airport trips that may see these effects.
14 We also tried other cutoffs, and the results are robust. They are
identical on using a cutoff of 100 meters and virtually indistinguish-
able on using a cutoff of 300, 400, or 500 meters.
15 See https://indianexpress.com/article/cities/delhi/delhi-cab-strike-
refuses-to-die-down-footfall-on-metro-sees-a-spike-4530858/, https://
www.hindustantimes.com/delhi-news/manic-monday-morning-
for-delhi-commuters-as-ola-uber-drivers-carry-on-strike/story-
p4SUkoIpuiUEi8Uyf5aCkJ.html.
16 See https://redseer.com/wp-content/uploads/2017/10/12.-Analyst-
Report_Online-Cabs_Q117.pdf.
17 Seventy-five percent of Ola’s ridership in 2015 came from the top
seven cities (https://redseer.com/wp-content/uploads/2017/10/
69.Ola-vs.-Uber-Competitive-Benchmarking-2015.pdf). We expect
Delhi to be one of the top cities on the list.
18 The most common choice of travel is walking at 35%, followed
by bus at 27% (http://www.indiaenvironmentportal.org.in/files/
file/Report%20on%20How%20to%20Decongest%20Delhi.pdf).
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