Instructor

John K. Ostlund

jostlund@andrew.cmu.edu (or jkostlund@gmail.com)

Hours of availability: 10:00 am to 9:00 pm, 7 days per week, via email and Zoom

I will be available to you as much as I can, 7 days per week, unless I'm traveling.

Office Hours: Via Zoom, every Sunday from 11:00 am until noon and again from 9:00 pm until

10:00 pm

Final Exam: Online on Tuesday, Oct. 12

PLEASE NOTE: Due to my and my wife's medical issues and concern about "breakout" cases of the Covid-19 Delta variant, CMU/Heinz College is allowing me to conduct lectures and office hours remotely during Mini 1 and Mini 2 of 2021. I will be delivering lectures via pre-recorded videos on YouTube, so that you can watch (and re-watch) them at your own convenience and at your own preferred playback speed. Office hours will be via Zoom (see above), and I am happy to arrange individual or group Zoom sessions to discuss any questions you have.

Teaching Assistants

Vamil Gandhi <u>vsgandhi@andrew.cmu.edu</u>

Darshil Pandya darshilp@andrew.cmu.edu

- The primary jobs of the TAs will be to help me with grading homework assignments, and to answer questions from you about the course material and the homework
- They may also hold office hours via Zoom, to be determined

Course Information Course Title: Introduction to Programming with Python

Instructor: John K. Ostlund (jostlund@andrew.cmu.edu)

Prerequisites (if applicable)	None
Description*	This course focuses on the fundamentals of computer programming using the Python 3 interpreted programming language. This course is designed for students with little or no programming knowledge. Students will develop their problem solving skills using the top-down procedural programming approach to build standalone software applications. Assignments will include weekly homework, bi-weekly checkpoint quizzes, and a final examination to test essential programming and problem solving skills. Some OOP (object oriented programming) will be used in this course. Learners will study how to build professional, user-friendly computer programs applicable to real-world usage in such areas as public policy and security analysis.

Software

Anaconda Version 2021.05 including Python 3.8, for Windows, Mac, or Linux:

https://www.anaconda.com/download/

See this installation video for guidance:

https://www.youtube.com/watch?v=akwXnH0_WmQ&list=PLPwOg45xx0b Wcnkxph508a05KN-v1aICj&index=3

Online Python Documentation and Tutorial

Course Materials (if applicable)

docs.python.org/3.8/

docs.python.org/3.8/tutorial

Recommended Textbook (expensive, not required, but very good!)

Starting Out with Python, 5th Edition, 2021, Tony Gaddis ISBN-13: 9780136679110

Optional Books

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython 2nd Edition by Wes McKinney ISBN-13: 978-1491957660, (available for free online through the Carnegie Mellon University Library)

Automate the Boring Stuff with Python: Practical Programming for Total Beginners (Sweigart, Al) ISBN-13: 978-1593275990, ISBN-10: 1593275994 (available for free on the web)

The final grade will be out of 100%. The grading breakdown is as follows:

Weekly Homework
Online Quizzes
Final Exam
45%

For each **homework assignment**, you will be assigned to a team of two or three people. To get the most from the homework, do as much of the homework yourself as possible. (As you work on the homework, if you get stuck, please feel free to ask your teammates, other students, the TAs, or the professor for help.) Then compare what you did with what your team members did (and with other students as well, if you wish). Finally, *one* member of your team should submit a **zip** archive of homework solutions to Canvas, on behalf of all team members. To get an A on a homework assignment, your team must get a score of 90 or better out of 100 (we fully expect everyone to get an A on each homework assignment).

Each week, there are also **labs** available for you to try. These are not graded, but are useful for practice.

You will need to pass a **quiz** for each week's material. These quizzes are on Canvas, and require LockDown Browser and Respondus Monitor. To get an A on a quiz, you must score 87.5% or better.

You will have up to *4 chances* to get an A on each quiz. Questions are generated from a large question base, so it is unlikely that you will get exactly the same questions on each attempt for a given quiz. You are only permitted to take a given quiz *one time per day* (if you are unable to get an A, we expect you to do some review and study prior to your next attempt, rather than merely rolling the dice and hoping for the best).

The **final exam** will be like a very long quiz. **The final exam will be online on the last day of class, Tuesday, Oct. 12.** You will only have **one chance** to take the final exam. The final exam is the only deliverable in the course on which it will be possible to get an A+, if you are among the very top performers. So to get an A+ as a course grade, you must get an A+ on the final exam, and A on most if not all of the homework assignments and quizzes.

Letter grades have these Heinz standard QPA points:

A +	4.33	A	4.00	A-	3.67
B +	3.33	В	3.00	B-	2.67
C +	2.33	C	2.00	C-	1.67
D+	1.33	D	1.00	D-	0.67

Evaluation Method

Suppose your Homework and Quiz average grades are A (which is more or less expected), and that your Final Exam grade is A-. Then your course grade OPA would be:

$$4.00 * 0.20 + 4.00 * 0.35 + 3.67 * 0.45 == 3.8515$$

I round rather than truncating, so this becomes a course letter grade of A.

In order to get an A+ course letter grade, your course grade QPA must be > 4.0 (strictly greater than 4.0).

Use the Python Spyder, PyCharm, and/or IDLE integrated development environment (IDE) in interactive and script mode to both test code snippets and author professional programs.

Develop problem solving skills through practice and understanding of the topdown procedural programming and Object Oriented Programming methodologies.

Learning/Co urse Objectives*

Perform calculations, evaluate numerical relations and logical expressions, manipulate character strings, and utilize Python's decision and loop structures.

Form and manipulate collections of data (such as lists, tuples, sets, and dictionaries).

Produce modules of functions for code reuse.

Solve real-world problems using the Python language.

	A+ 97.00 – 100.00%
Heinz College Grading Scale*	A 93.00 – 96.99%
	A- 90.00 – 92.99%
	B+ 87.00 - 89.99%
	В 83.00 – 86.99%
	B- 80.00 – 82.99%
	C+ 77.00 - 79.99%
	C 73.00 – 76.99%
	C- 70.00 – 72.99%
	*Subject to change, at the professor's discretion

Course	e/Toni

cal Outline:*

- Week 1 Python Basics
 - o Exponentiation
 - o Unary Plus and Minus
 - o Multiplication, Division, Modulus, and Floor Division
 - o Addition and Subtraction
 - o Precedence, Associativity, and (...)
 - The Python Shell and IDLE Integrated Development Environment
 - o Variables, Assignment, Values, and Comments
 - Arithmetic and Arithmetic Operators
 - o Scalar Data Types: int, float, str, bool, special value None
 - String (str) representation and operations
 - o The **print()** output function
 - o The **list** collection type (a class)
 - for loops and the range() function
- Week 2 Slices, if/else Decisions, Programs, Functions, and Input
 - Sequences and Slices
 - Object Identity, References, == vs. is
 - o if/elif/else Decisions and Indentation Rules
 - Equality, Inequality, Relational, and Logical Operators
 - User Input: the input() function
 - Type Conversions and Exceptions
 - o The **while** Loop
 - o Writing a Program
 - o Defining and Calling Functions
 - File Input and Output
- Week 3 Review, Modules, tuple, set, and dict
 - Importing Modules
 - o The **tuple** Sequence
 - o The **set** Collection
 - o The **dict** Dictionary
- Week 4 Collection Properties, Defining Modules, and Comprehensions
 - o Creating Empty, One Item, Multi Item Collections
 - o Mutable, Iterable, Sortable, Sliceable Collections
 - o Collection Conversions and the **zip()** Function
 - Defining Well-Structured Modules
 - o **list** Comprehensions
- Week 5 More Comprehensions, Collection Conversions, String Handling
 - Letter Case
 - Justification
 - o split() and join()
 - Counting, Finding, and Replacing Substrings
 - Formatting

 Conversions among list, tuple, set, and dict types More list Comprehensions set and dict Comprehensions String (str) Handling Week 6 - NumPy, Statistics, and Visualization NumPy N-dimensional Arrays Vectorized Mathematics Statistics and Random Number Generators Visualization with matplotlib Week 7 - Final Exam Final Exam online on Tuesday, Oct. 12 * Subject to change

Week 1:	Homework 1 due Mon., Sept. 6
Week 2:	Pass Quiz 1; Homework 2 due Mon., Sept. 13

Schedule

Week 4: Pass Quiz 3; Homework 4 due Mon., Sept. 27

Pass Quiz 2; Homework 3 due Mon., Sept. 20

Week 5: Pass Quiz 4; Homework 5 due Mon., Oct. 4

Week 6: Pass Quiz 5; Homework 6 due Mon., Oct. 11

Week 7: Final Exam online on Tuesday, Oct. 12

Assignment Submission:

Week 3:

Homework Assignments will be due at 11:59 pm U.S. Eastern time on Monday each week. One member of each homework team must post the team's zip archive of solution files to Canvas prior to the deadline. Late homework will lose points rapidly, as described in the instructions for each assignment.

If you experience upload problems with Canvas, email me your work for grading.

Course Policies & Expectations

Students with Disabilities:

Our community values diversity and seeks to promote meaningful access to educational opportunities for all students. CMU and your instructors are committed to your success and to supporting Section 504 of the Rehabilitation Act of 1973 as amended and the Americans with Disabilities Act (1990). This means that in general no individual who is otherwise qualified shall be excluded from participation in, be denied benefits of, or be subjected to discrimination under any program or activity, solely by reason of having a disability.

If you believe that you need accommodations for a disability, please contact us ASAP, and we will work together to ensure that you have the correct access to resources on campus to assist you through your coursework and time at CMU.

Academic Integrity:

Carnegie Mellon University sets high standards for academic integrity. Those standards are supported and enforced by students, including those who serve as academic integrity hearing panel members and hearing officers. The presumptive sanction for a first offense is course failure, accompanied by the transcript notation "Violation of the Academic Integrity Policy." The standard sanction for a first offense by graduate students may be suspension or expulsion. Please see http://www.cmu.edu/academic-integrity/ for any questions.

Cell Phones, Smartphones and other handheld wireless devices:

Other than during class breaks, please silence ring tones and refrain from engaging in calls, messaging or other use during class time. All devices must not be visible during quizzes.

Policy Regarding Students Using English as a Foreign Language:

Assignments in this course are graded with reference to evidence of the acquisition of concepts, presentation format, and accuracy of information. Having done business in countries that use languages other than English, we understand that the use of an unfamiliar language can result in unusual word choices or grammatical errors that are not critical to the overall understanding of the information. Therefore, we will take into account your need to function in a language that may be unfamiliar to you. We will provide feedback as appropriate if we feel that language or grammar you have used in assignments would be best if it were configured in a different way.

Use of Canvas System for this course:

The Heinz School uses Carnegie Mellon University's Canvas system to facilitate distance learning as well as to enhance main campus courses. In this course, we will use the Canvas system generally to post lecture notes and related documents and to receive assignments electronically from students.

Take care of yourself:

Do your best to maintain a healthy lifestyle this semester by eating well, exercising, avoiding drugs and alcohol, getting enough sleep and taking some time to relax. This will help you achieve your goals and cope with stress.

All of us benefit from support during times of struggle. You are not alone. There are many helpful resources available on campus and an important part of the college experience is learning how to ask for help. Asking for support sooner rather than later is often helpful. If you or anyone you know experiences any academic stress, difficult life events, or feelings like anxiety or depression, we strongly encourage you to seek support. Counseling and Psychological Services (CaPS) is here to help: call 412-268-2922 and visit their website at http://www.cmu.edu/counseling/. Consider reaching out to a friend, faculty or family member you trust for help getting connected to the support that can help.

If you or someone you know is feeling suicidal or in danger of self-harm, call someone immediately, day or night:

- CaPS: 412-268-2922 [1]
- Re:solve Crisis Network: 888-796-8226 [SEP]
- If the situation is life threatening, call the police: [SEP]
 - o On campus: CMU Police: 412-268-2323
 - o Off campus: 911

If you have questions about this or your coursework, please let me know.